Skip to main content

Introduction

  • Chapter
  • First Online:
Principles of Evolution

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

This introductory section serves as a summary of overarching concepts, universal features, recurrent puzzles, a common language, and striking parallels between units of life, ranging from simple to complex organisms. We start with a short chronology of evolution, since nowhere else in this book is the historical path of evolution followed. An underlying common methodology of all articles here is reductionism. The section on reductionism illustrates the great success of this approach with examples from physics and biology, including also a hint on its abuse when it is pushed to extremes. Guided by the success of reductionism, one may wonder whether there is a universal theory of evolution. Such a universal theory does not exist, but striving for universal laws makes sense when it is based on striking similarities between seemingly very different realizations of systems whose dynamics is governed by the very same mechanism. In this case recurrent behavior goes beyond a superficial analogy. Again we illustrate the concept of universality with examples from physics, but also indicate limitations in view of universal equations. Beyond universal laws, universal principles of organization may be at work. One such overarching principle is self-organization. In addition to its known successful application in various disciplines such as physics, chemistry, and cell biology, it leads to a challenge for future research on how far one can further stretch this concept to explain all complex outcome of evolution as self-organized. Common to the various examples of self-organization in later chapters is the emergence of a complex structure out of less structured or even random initial conditions. The very choice of initial conditions is often the art of the game. In the spirit of reductionism, the initial conditions should involve as little structure as possible to let the complex structure emerge from the very rules of evolutionary processes. This demand may lead to “chicken and egg”-like dilemmas. Such dilemmas appear in many facets in and outside natural science. They are intimately related to questions of origin, in particular the origin of life. Questions of life’s origin go along with an estimate of the date when first forms of life appeared. Therefore another evocative topic concerns the very probability of life coming into existence in the course of evolution. This relates to the tension between contingency and necessity, stochastic fluctuations and deterministic rules. The question arises as to whether, if we were able to rewind the tape of evolution and replay it again, contingency would lead to minor differences or even changes in the gross features of the evolutionary outcome. Rewinding the whole tape is science fiction, but rerunning short sequences of this tape is reality. We collect a few such attempts from contemporary lab experiments under controlled initial conditions or related computer simulations. Without mathematical modeling, seemingly natural extrapolations lead to premature or even false conclusions on the evolutionary potential. Therefore we disentangle the reduction of complexity from misleading oversimplifications and conclude with an appeal for mathematical modeling also in biology. Finally we summarize all chapters of this book to embed their content in the context of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Schuster, Complexity 15/6, 7 (2010)

    Google Scholar 

  2. A. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic, London 1990)

    Google Scholar 

  3. M. Roos, Introduction to Cosmology (Wiley, Chichester, 1994)

    Google Scholar 

  4. E.W. Kolb, M.S. Turner, The Early Universe (Westview, Boulder, CO, 1994)

    Google Scholar 

  5. F. Press, R. Siever, Understanding Earth, 3rd edn. (W.H. Freeman, New York, NY, 2001)

    Google Scholar 

  6. J. Maynard Smith, E. Szathmáry, The Major Transitions in Evolution (Oxford University Press, Oxford, 1995)

    Google Scholar 

  7. H. Weyl Space, Time, Matter, translated from the 4th German edition (London, Methuen 1922) [Raum, Zeit, Materie 8. Aufl. (Springer, Berlin, Heidelberg, 1993)]

    MATH  Google Scholar 

  8. L. O’Raifeartaigh, The Dawning of Gauge Theory (Princeton University Press, Princeton, NJ, 1997)

    MATH  Google Scholar 

  9. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  10. L.P. Kadanoff, Rev. Mod. Phys. 49, 267 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Samal, S. Jain, BMC Syst. Biol. 2, 21 (2008). A. Samal, S. Singh, V. Giri, S. Krishna, N. Raghuram, S. Jain, BMC Bioinformatics 7, 118 (2006)

    Article  Google Scholar 

  12. P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, K. Schulten, Structure 14, 437 (2006)

    Article  Google Scholar 

  13. M.B. Elowitz, S. Leibler, Nature 403, 335 (2000)

    Article  ADS  Google Scholar 

  14. T. Reichenbach, M. Mobilia, E. Frey, Nature 448, 1046 (2007)

    Article  ADS  Google Scholar 

  15. N.F. Britton, Essential Mathematical Biology, 1st edn. (Springer, Berlin, Heidelberg, 2003)

    MATH  Google Scholar 

  16. A. Turing, Philos. Trans. R. Soc. Lond. B 237, 37 (1952)

    Article  ADS  Google Scholar 

  17. J.D. Murray, Mathematical Biology, 2nd edn. (Springer, Berlin, Heidelberg, 1993)

    Book  MATH  Google Scholar 

  18. H. Meinhardt, Wie Schnecken sich in Schale werfen (Springer, Berlin, Heidelberg, 1997)

    MATH  Google Scholar 

  19. Y. Xu, C.M. Vest, J.D. Murray, Appl. Opt. 22, 3479 (1983)

    Article  ADS  Google Scholar 

  20. T. Surrey, F. Nédélec, S. Leibler, E. Karsenti, Science 292, 1167 (2001)

    Article  ADS  Google Scholar 

  21. T.R. Cech, Gene 135 (1–2), 33 (1993)

    Article  Google Scholar 

  22. M. Eigen, P. Schuster, J. Mol. Evol. 19(1), 47 (1982)

    Article  Google Scholar 

  23. R. Shapiro, Orig. Life Evol. Biosph. 14, 565 (1984)

    Article  Google Scholar 

  24. D. Segré, D. Ben-Eli, D.W. Deamer, D. Lancet, Orig. Life Evol. Biosph. 31(1–2), 119 (2001)

    Article  ADS  Google Scholar 

  25. D. Segré, D. Lancet, Chemtracts Biochem. Mol. Biol. 12, 382 (1999)

    Google Scholar 

  26. M. Schliwa (ed.), Molecular Motors (Wiley-VCH, Weinheim, 2003). K. Nishinari, Y. Okada, A. Schadschneider, D. Chowdhury, Phys. Rev. Lett.95, 118101 (2005). P. Greulich, A. Garai, K. Nishinari, A. Schadschneider, D. Chowdhury, Phys. Rev. E 75, 041905 (2007)

    Google Scholar 

  27. A. Garai, D. Chowdhury, D. Chowdhury, T.V. Ramakrishnan, Phys. Rev. E 80, 011908 (2009). A. Garai, Ph.D. Thesis, IIT Kanpur, India (2010)

    Article  ADS  Google Scholar 

  28. A. Garai, D. Chowdhury, M.D. Betterton, Phys. Rev. E 77, 061910 (2008)

    Article  ADS  Google Scholar 

  29. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Nature 365, 721 (1993). J.T. Finer, R.M. Simmons, J.A. Spudich, Nature 368, 113 (1994)

    Article  ADS  Google Scholar 

  30. M.D. Wang, M.J. Schnitzer, H. Yin, R. Landick, J. Gelles, S.M. Block, Science 282, 902 (1998). D. Sinha, U. Bhalla, G.V. Shivashankar, Appl. Phys. Lett. 85, 4789 (2004)

    Article  ADS  Google Scholar 

  31. J.D. Wen, L. Lancaster, C. Hodges, A.C. Zeri, S.H. Yoshimura, H.F. Noller, C. Bustamante, I. Tinoco, Jr., Nature 452, 598 (2008). A. Garai, D. Chowdhury, arXiv:1004.4327v2 [phys. bio-ph]

    Article  ADS  Google Scholar 

  32. Z.D. Blount, C.Z. Borland, R.E. Lenski, Proc. Natl. Acad. Sci. USA 105, 7899 (2008)

    Article  ADS  Google Scholar 

  33. S.J. Gould, The Structure of Evolutionary Theory (Belknap, Cambridge, MA, 2002)

    Google Scholar 

  34. S. Conway Morris, Life’s Solution (Cambridge University Press, Cambridge, UK, 2003)

    Book  Google Scholar 

  35. A.S. Mikhailov, V. Calenbuhr, From Cells to Societies (Springer, Berlin, Heidelberg, 2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hildegard Meyer-Ortmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer-Ortmanns, H. (2011). Introduction. In: Meyer-Ortmanns, H., Thurner, S. (eds) Principles of Evolution. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18137-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18137-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18136-8

  • Online ISBN: 978-3-642-18137-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics