Skip to main content

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG,volume 0))

  • 1404 Accesses

Abstract

Many engineering projects are designed on the basis of laboratory tests using so-called ‘undisturbed’ samples of clay taken from the field. There is a tendency to test only intact specimens and discard specimens that appear disturbed, fissured or otherwise weaker. It is known, however, that natural processes such as wetting-drying, freezing-thawing, desiccation, heating-cooling, and alterations in chemistry can affect the structure of clays and significantly change their compressibilities, hydraulic conductivities and strengths. For example, plastic clays that have been fissured by desiccation or freezing cannot reliably provide peak strength resistance in slopes and under engineered embankments. The paper shows examples of projects where natural processes degraded the strengths of natural and reconstituted clays. The case histories in the paper provide a reminder of the importance of recognizing natural processes and the limitations of laboratory measurements when selecting appropriate parameters for numerical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubertin, M., Ricard, J.-F., Chapuis, R.P.: A predictive model for the water retention curve: application to tailings from hard-rock mines. Can Geotech. J. 35, 55–69 (1998)

    Article  Google Scholar 

  • ASTM, Standard Test Method for Particle Size Analysis of Natural and Man-Made Riprap Materials. Standard ASTMD 5519 – 94, Am. Soc. Testing Mater, Philadelphia PA (1994)

    Google Scholar 

  • Bjerrum, L.: Engineering geology of normally-consolidated marine clays as related to the settlements of buildings. GĂ©otech. 17, 81–118 (1967)

    Google Scholar 

  • Blatz, J.A., Graham, J.: Elastic-plastic modeling of unsaturated soil using results from a new triaxial test with controlled suction. Symposium in Print on Suction in Unsaturated Soils, GĂ©otechnique 53, 113–122 (2003)

    Google Scholar 

  • Blatz, J.A., Ferreira, N.J., Graham, J.: Effects of near-surface environmental conditions on instability of an unsaturated soil slope. Can Geotech. J. 41, 1111–1126 (2004)

    Article  Google Scholar 

  • Garinger, B., Alfaro, M., Graham, J., et al.: Instability of dykes at Seven Sisters Generating Station. Can Geotech. J. 41, 959–971 (2004)

    Article  Google Scholar 

  • Graham, J.: The 2003 R. M. Hardy Lecture: Soil parameters for numerical analysis in clay. Can Geotech. J. 43, 187–200 (2006)

    Article  Google Scholar 

  • Graham, J., Au, V.C.S.: Influence of freeze thaw and softening effects on stress-strain behaviour of natural plastic clay at low stresses. Can Geotech. J. 22, 69–78 (1985)

    Article  Google Scholar 

  • Graham, J., Oswell, J.M., Gray, M.N.: The effective stress concept in saturated sand-clay buffer. Can Geotech. J. 29, 1033–1043 (1992)

    Article  Google Scholar 

  • Graham, J., Tanaka, N., Crilly, T., et al.: Modified Cam-Clay modelling of temperature effects in clays. Can Geotech. J. 38, 608–621 (2001)

    Article  Google Scholar 

  • Graham, J., Franklin, K., Alfaro, M., et al.: Degradation of shaley limestone rip-rap. Can Geotech. J. 44, 1265–1272 (2007)

    Article  Google Scholar 

  • Hueckel, T., Baldi, G.: Thermoplasticity of saturated clays: experimental constitutive study. Am. Soc. Civ. Eng., J. Geotech. Eng. 116, 1778–1796 (1990)

    Article  Google Scholar 

  • Iowa Department of Transportation (IDOT), Iowa Pore Index Test. Interim Report, Iowa Dept Transport, Ames, Iowa (1980)

    Google Scholar 

  • Kelln, K., Sharma, J., Hughes, D., et al.: An improved framework for an elastic-viscoplastic soil model. Can Geotech. J. 45, 1356–1376 (2008a)

    Article  Google Scholar 

  • Kelln, C., Sharma, J., Hughes, D.: A finite element solution scheme for an elastic–viscoplastic soil model. Comp. and Geotech. 35, 524–536 (2008b)

    Article  Google Scholar 

  • Kelln, C., Sharma, J., Hughes, D., et al.: Finite element analysis of an embankment on soft estuarine deposit using an elastic-viscoplastic soil model. Can Geotech. J. (2009) (in press)

    Google Scholar 

  • Man, A., Graham, J., Van Gulck, J.: Effect of pore fluid chemistry on strain-softening behaviour of reconstituted plastic clay. In: Proc. 5th Int. Conf. Geoenvir. Eng., Cardiff, Wales (June 2006)

    Google Scholar 

  • Man, A., Graham, J.: Pore fluid chemistry and the stress-strain behaviour of a reconstituted highly plastic clay. Geotechnique (2008) (in review)

    Google Scholar 

  • Mesri, G., Castro, A.: The Cα/Cc concept and Ko during secondary compression. Amer. Soc. Civ. Eng., J. Geotech. Eng. 119, 230–247 (1987)

    Article  Google Scholar 

  • Perzyna, P.: The constitutive equations for rate sensitive plastic materials. Q. J. Appl. Math. 20, 321–332 (1963)

    MathSciNet  MATH  Google Scholar 

  • Rivard, P.J., Lu, Y.: Shear strength of soft fissured clay. Can Geotech. J. 15, 382–390 (1978)

    Article  Google Scholar 

  • Schofield, A.N.: Disturbed Soil Properties and Geotechnical Design. Thomas Telford Limited, London (2005)

    Book  Google Scholar 

  • Tanaka, N., Graham, J., Lingnau, B.E.: A thermal elastic plastic model based on Modified Cam Clay. In: 10th Pan. Am. Conf. Soil Mech. Found. Eng., Guadalajara Mex, vol. 1, pp. 534–546 (October 1995)

    Google Scholar 

  • van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. J. Soil Sci. Soc. Am. 44, 892–898 (1980)

    Article  Google Scholar 

  • Yin, J.-H., Zhu, J.-G., Graham, J.: A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification. Can Geotech. J. 39, 157–173 (2002)

    Article  Google Scholar 

  • Yuen, K., Graham, J., Janzen, P.: Weathering-induced fissuring and hydraulic conductivity in a natural plastic clay. Can Geotech. J. 35, 1101–1108 (1998)

    Article  Google Scholar 

  • Zhou, Y.: Rajapakse RKND and Graham J A coupled thermoporoelastic model with thermo-osmosis and thermal filtration. Int. J. Solids Struct. 35, 4659–4683 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graham, J., Alfaro, M., Blatz, J. (2011). Natural Processes and Strength Degradation. In: Wan, R., Alsaleh, M., Labuz, J. (eds) Bifurcations, Instabilities and Degradations in Geomaterials. Springer Series in Geomechanics and Geoengineering, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18284-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18284-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18283-9

  • Online ISBN: 978-3-642-18284-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics