Skip to main content

Angiotensin and Aldosterone Biosynthesis

  • Chapter
Angiotensin Vol. II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 163 / 2))

Abstract

Angiotensin II (Ang II) is, with extracellular potassium, the principal regulator of the biosynthesis of aldosterone, the main mineralocorticoid in man. Because various cardiovascular pathological states are often associated with inappropriate levels of circulating aldosterone, it is of importance to understand the intracellular molecular mechanisms leading to aldosterone output in the adrenal zona glomerulosa cell. The present chapter reviews the current knowledge on the events that are triggered by angiotensin II, from the interaction with membrane receptors to the final output of aldosterone. The initial signaling processes involve complex changes in intracellular phospholipid and calcium homeostasis resulting from effects of Ang II on various effector enzymes (phospholipases) and calcium channels, as well as on intracellular calcium stores. Concomitantly, a series of kinase pathways (protein kina se C, mitogenactivated protein kinase, tyrosine kinases, etc.) are activated. These intracellular signals then mediate a variety of localized responses along the entire cascade of events leading from uptake of cholesterol, the precursor of all steroids, to cholesterol supply to the mitochondrial enzymatic machinery that will process cholesterol to aldosterone. Indeed , Ang II increases HDL-cholesterol import at the cell surface, cholesterol ester hydrolysis in lipid droplets , scavenger receptor class B type I(HDL receptor), steroidogenic acute regulatory (StAR) protein or aldosterone synthase gene expression in the nucleus, or StAR-mediated cholesterol importation into mitochondria. In addition, recent work has shown that aldosterone can also be synthesized and act in nonclassic steroidogenic tissues such as brain, vessels and, most importantly, the heart, where it may have deleterious effects in some pathological situations such as heart failure or myocardial infarction

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-Bl as a high density lipoprotein receptor. Science 271:518–520

    PubMed  CAS  Google Scholar 

  • Aesoy R, Mellgren G, Morohashi K, Lund J (2002) Activation of cAMP-dependent protein kinase increases the protein level of steroidogenic factor-I. Endocrinology 143:295–303

    PubMed  CAS  Google Scholar 

  • Aguilera G, Catt KJ (1986) Participation of voltage-dependent calcium channels in the regulation of adrenal glomerulosa function by angiotensin II and potassium. Endocrinology 118:112–128

    PubMed  CAS  Google Scholar 

  • Ambroz C, Catt KJ (1992) Angiotensin II receptor-mediated calcium influx in bovine adrenal glomerulosa cells. Endocrinology 131:408–414

    PubMed  CAS  Google Scholar 

  • Amri H, Li H, Culty M, Gaillard JL, Teper G, Papadopoulos V (1999) The peripheral-type benzodiazepine receptor and adrenal steroidogenesis. Curr Opin Endocrinol Diabetes. 6:179–184

    CAS  Google Scholar 

  • Andreis P G, Neri G, Tortorella C, Gottardo L, Nussdorfer GG (2000) Tyrphostin-23 enhances steroid-hormone secretion from dispersed human and rat adrenocortical cells. Endocr Res 26:319–332

    PubMed  CAS  Google Scholar 

  • Apfeldorf WJ, Isales CM, Barrett PQ (1988) Atrial natriuretic peptide inhibits the stimulation of aldosterone secretion but not the transient increase in intracellular free calcium concentration induced by angiotensin II addition. Endocrinology 122:1460–1465

    PubMed  CAS  Google Scholar 

  • Aptel HBC, Johnson EIM, Vallotton MB, Rossier MF, Capponi AM (1996) Demonstration of an angiotensin II-induced negative feedback effect on aldosterone synthesis in isolated rat adrenal zona glomerulosa cells. Mol Cell Endocrinol 119:105–111

    PubMed  CAS  Google Scholar 

  • Aptel HBC, Burnay MM, Rossier MF, Capponi AM (1999) The role of tyrosine kinases in capacitative calcium influx-mediated aldosterone production in bovine adrenal zona glomerulosa cells. J Endocrinol 163:131–138

    PubMed  CAS  Google Scholar 

  • Arakane F, Sugawara T, Nishino H, Liu ZM, Holt JA, Pain O, Stocco OM, Miller WL, Strauss JF (1996) Steroidogenic acute regulatory protein (StAR) retains activity in the absence of its mitochondrial import sequence: implications for the mechanism of StAR action. Proc Natl Acad Sci USA 93:13731–13736

    PubMed  CAS  Google Scholar 

  • Arakane F, Kallen CB, Watari H, Foster JA, Sepuri NV, Pain O, Stayrook SE, Lewis M., Gerton GL, Strauss JF (1998) The mechanism of action of steroidogenic acute regulatory protein (StAR)-StAR acts on the outside of mitochondria to stimulate steroi dogenesis. J Bioi Chem 273:16339–16345

    CAS  Google Scholar 

  • Atarashi K, Mulrow PJ, Franco-Saenz R (1985) Effect of atrial peptides on aldosterone production. J Clin Invest 76:1807–1

    PubMed  CAS  Google Scholar 

  • Baba K, Doi Y, Franco-Saenz R, Mulrow PJ (1986) Mechanisms by which nephrectomy stimulates adrenal renin. Hypertension 8:997–1002

    PubMed  CAS  Google Scholar 

  • Balasubramaniam S, Goldstein JL, Faust JR, Brunschede GY, Brown MS (1977) Lipoprotein-mediated regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesteryl ester metabolism in the adrenal gland of the rat. J Bioi Chem 252:1771–1779

    CAS  Google Scholar 

  • Balla T, Spat A (1982) The effect of various calmodulin inhibitors on the response of adrenal glomerulosa cells to angiotensin II and cyclic AMP. Biochem Pharmacol 31:3705–3707

    PubMed  CAS  Google Scholar 

  • Balla T, Baukal AJ, Guillemette G, Morgan RO, Catt KJ (1986) Angiotensin-stimulated production of inositol trisphosphate isomers and rapid metabolism through inositol 4-monophosphate in adrenal glomerulosa cells. Proc Natl Acad Sci USA 83:9323–9327

    PubMed  CAS  Google Scholar 

  • Balla T, Guillemette G, Baukal AJ, Catt KJ (1987) Metabolism of inositol 1,3,4-trisphos phate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells. J Bioi Chem 262:9952–9955

    CAS  Google Scholar 

  • Balla T, Baukal AJ, Guillemette G, Catt KJ (1988) Multiple pathways of inositol polyphosphate metabolism in angiotensin-stimulated adrenal glomerulosa cells. J Biol Chem 263:4083–4091

    PubMed  CAS  Google Scholar 

  • Balla T, Hausdorff WP, Baukal AJ, Catt KJ (1989) Inositol polyphosphate production and regulation of cytosolic calcium during the biphasic activation of adrenal glomerulosa cells by angiotensin II. Arch Biochem Biophys 270:398–403

    PubMed  CAS  Google Scholar 

  • Balla T, Hollo Z, Varnai P, Spät A (1991) Angiotensin II inhibits potassium-induced calcium signal generation in rat adrenal glomerulosa cells. Biochem J 273:399–404

    PubMed  CAS  Google Scholar 

  • Balla T, Nakanishi S, Catt KJ (1994) Cation sensitivity of inositol 1,4,5-trisphosphate production and metabolism in agonist-stimulated adrenal glomerulosa cells. J Biol Chem 269:16101–16107

    PubMed  CAS  Google Scholar 

  • Barlucchi L, Leri A, Dostal DE, Fiordaliso F, Tada H, Hintze TH, Kajstura J, Nadal-Ginard B, Anversa P (2001) Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circ Res 88:298–304

    PubMed  CAS  Google Scholar 

  • Barrett PO, Isales CM (1988) The role of cyclic nuc1eotides in atrial natriuretic peptidemediated inhibition of aldosterone secretion. Endocrinology 122:799–808

    PubMed  CAS  Google Scholar 

  • Barrett PO, Kojima I, Kojima K, Zawalich K, Isales CM, Rasmussen H (1986) Temporal patterns of protein phosphorylation after Angiotensin II, A23187 and/or 12-0-tetradecanoylphorbol 13-acetate in adrenal glomerulosa cells. Biochem J 238:893–903

    PubMed  CAS  Google Scholar 

  • Barrett PO, Bollag WB, Isales CM, McCarthy RT, Rasmussen H (1989) Role of calcium in Angiotensin II-mediated aldosterone secretion. Endocr Rev 10:496–518

    PubMed  CAS  Google Scholar 

  • Barrett PO, Ertel EA, Smith MM, Nee JJ, Cohen CJ (1995) Voltage-gated calcium currents have two opposing effects on the secretion of aldosterone. Am J Physiol 268:C985–C992

    PubMed  CAS  Google Scholar 

  • Barrett PO, Isales CM, Bollag WB, McCarthy RT (1991) Calcium channels and aldosterone secretion: modulation by potassium and atrial natriuretic peptide. Am J Physiol 261:F706–F719

    PubMed  CAS  Google Scholar 

  • Barrett PO, Lu HK, Colbran R, Czernik A, Pancrazio JJ (2000) Stimulation of unitary T-type Ca(2+) channel currents by calmodulin-dependent protein kinase II [In Process Citation. J Am J Physiol Cell Physiol 279:CI694–CI703

    Google Scholar 

  • Baukal AJ, Guillemette G, Rubin R, Spat A, Catt KJ (1985) Binding sites for inositol trisphosphate in the bovine adrenal cortex. Biochem Biophys Res Comm 133:532–538

    PubMed  CAS  Google Scholar 

  • Baukal AJ, Balla T, Hunyady L, Hausdorff WP, Guillemette G, Catt KJ (1988) Angiotensin II and guanine nucleotides stimulate formation of inositol 1,4,5-trisphosphate and its metabolites in permeabilized adrenal glomerulosa cells. J Biol Chem 263:6087–6092

    PubMed  CAS  Google Scholar 

  • Baukal AJ, Hunyady L, Catt KJ, Balla T (1994) Evidence for participation of calcineurin in potentiation of agonist-stimulated cyclic AMP formation by the calcium-mobilizing hormone, angiotensin II. J Biol Chem 269:24546–24549

    PubMed  CAS  Google Scholar 

  • Baum CL, Reschly EJ, Gayen AK, Groh ME, Schadick K (1997) Sterol carrier protein-2 overexpression enhances sterol cycling and inhibits cholesterol ester synthesis and high density lipoprotein cholesterol secretion. J Biol Chem 272:6490–6498

    PubMed  CAS  Google Scholar 

  • Beckett GJ, Boyd GS (1977) Purification and control of cholesterol ester hydrolase and evidence for the activation of the enzyme by a phosphorylation. Eur J Biochem 72:223–233

    PubMed  CAS  Google Scholar 

  • Beggah AT, Escoubet B, Puttini S, Cailmail S, Delage V, Ouvrard-Pascaud A, Bocchi B., Peuchmaur M, Delcayre C, Farman N, Jaisser F (2002) Reversible cardiac fibrosis and heart failure induced by conditional expression of an antisense mRNA of the mineralocorticoid receptor in cardiomyocytes. Proc Natl Acad Sci USA 99:7160–7165

    PubMed  CAS  Google Scholar 

  • Belfrage P, Fredrikson G, Nilsson NO, Stralfors P (1980) Regulation of adipose tissue lipolysis: phosphorylation of hormones sensitive lipase in intact rat adipocytes. FEBS Lett 111:120–124

    PubMed  CAS  Google Scholar 

  • Bernstein KE, Berk BC (1993) The biology of angiotensin II receptors. Am J Kidney Dis 22:745–754

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  • Bird IM, Mason JI, Rainey WE (1998a) Battle of kinases: integration of adrenal responses to cyclic AMP, diacylglycerol, and calcium at the level of steroidogenic cytochromes P450 and 3beta HSD expression in H295R. Endocr Res 24:345–354

    CAS  Google Scholar 

  • Bird IM, Mason JI, Rainey WE (1998b) Protein kinase A, protein kinase C, and calciumregulated expression of 21-hydroxylase cytochrome P450 in H295R human adrenocortical cells. J Clin Endocrinol Metab 83:1592–1597

    CAS  Google Scholar 

  • Biron P, Koiw E, Nowaczynski W, Brouillet J, Genest J (1961) The effects of intravenous infusions of valine-5-angiotensin II and other pressor agents on urinary electrolytes and corticosteroids, including aldosterone. J Clin Invest 40:338–347

    PubMed  CAS  Google Scholar 

  • Black VH (1987) Lipoprotein requirements for secretion of ultraviolet-absorbing corticosteroids by guinea pig adrenocortical cells in vitro: inner versus outer cortices; zona glomerulosa versus zona fasciculata. Endocrinology 120:640–650

    PubMed  CAS  Google Scholar 

  • Bodart V, Ong H, De Lean A (1995) A role for protein tyrosine kinase in the steroidogenic pathway of angiotensin II in bovine zona glomerulosa cells. J Steroid Biochem Mol Biol 54:55–62

    PubMed  CAS  Google Scholar 

  • Bollag WB, Barrett PQ, Isales CM, Liscovitch M, Rasmussen H (1990) A potential role for phospholipase D in the angiotensin II-induced stimulation of aldosterone secretion from bovine adrenal glomerulosa cells. Endocrinology 127:1436–1443

    PubMed  CAS  Google Scholar 

  • Bollag WB, Jung E, Calle RA (2002) Mechanism of angiotensin II-induced phospholipase D activation in bovine adrenal glomerulosa cells. Mol Cell Endocrinol 192:7–16

    PubMed  CAS  Google Scholar 

  • Bose HS, Sugawara T, Strauss JF, Miller WL (1996) The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 335:1870–1878

    PubMed  CAS  Google Scholar 

  • Bose HS, Whittal RM, Baldwin MA, Miller WL (1999) The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci USA 96:7250–7255

    PubMed  CAS  Google Scholar 

  • Bose HS, Lingappa VR, Miller WL (2002) Rapid regulation of steroidogenesis by mitochondrial protein import. 417:87–91

    Google Scholar 

  • Boulay G, Gallo-Payet N, Guillemette G (1990) Implication of phospholipase C in the steroidogenic action of angiotensin II. Eur J Pharmacol 189:267–275

    PubMed  CAS  Google Scholar 

  • Boulay G, Chretien L, Richard DE, Guillemette G (1994) Short-term desensitization of the angiotensin II receptor of bovine adrenal glomerulosa cells corresponds to a shift from a high to a low affinity state. Endocrinology 135:2130–2136

    PubMed  CAS  Google Scholar 

  • Boyd GS,McNamara B, Suckling KE, Tocher DR (1983) Cholesterol metabolism in the adrenal cortex. J Steroid Biochem 19:1017–1027

    PubMed  CAS  Google Scholar 

  • Boyd JE, Page RB, Mulrow PJ (1972) The effect of hypophysectomy on the conversion of corticosterone to aldosterone in the sodium-depleted rat. Endocrinology 90:827–829

    PubMed  CAS  Google Scholar 

  • Boyd J, Mulrow PJ, Palmore WP, Silvo P (1973) Importance of potassium in the regulation of aldosterone production. Circ Res 32 [Suppl 1]:39–45

    PubMed  Google Scholar 

  • Braley L, Menachery A, Brown E, Williams G (1984) The effects of extracellular K+ and angiotensin II on cytosolic Ca++ and steroidogenesis in adrenal glomerulosa cells. Biochem Biophys Res Commun 123:810–815

    PubMed  CAS  Google Scholar 

  • Brandenburger Y, Arrighi J-F, Rossier MF, Maturana AD, Vallotton MB, Capponi AM (1999) Measurement of perimitochondrial calcium concentration in bovine adrenal glomerulosa cells with aequorin targeted to the outer mitochondrial membrane. Biochem J 341:745–753

    PubMed  CAS  Google Scholar 

  • Brandenburger Y, Kennedy ED, Python CP, Rossier MF, Vallotton MB, Wollheim CB, Capponi AM (1996) Possible role for mitochondrial calcium in angiotensin II-and potassium-stimulated steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology 137:5544–5551

    PubMed  CAS  Google Scholar 

  • Braun-Menendez, Fasciolo JC, Leloir LF, Mufioz JM (1939) La sustancia hipertensora de la sangre del rifion isquemiado. Rev Soc Arg Biol 15:420–425

    Google Scholar 

  • Brauneis U, Vassilev PM, Quinn SJ, Williams GH, Tillotson DL (1991) Angiotensin II blocks potassium currents in zona glomerulosa cells from rat, bovine and human adrenals. Am J Physiol 260:E772–E779

    PubMed  CAS  Google Scholar 

  • Brody RI, Black VH (1988) Acyl-coenzyme A:cholesterol acyltransferase and cholesterol ester hydrolase in the outer and inner cortices of the guinea pig adrenal: effects of adrenocorticotropin and dexamethasone. Endocrinology 122:1722–1731

    PubMed  CAS  Google Scholar 

  • Brody RI, Black VH (1991) Differential ACTH response of immunodetectable HMG CoA reductase and cytochromes P450(l7 alpha) and P450(21) in guinea pig adrenal outer zone cell types, zona glomerulosa and zona fasciculata. Endocr Res 17:195–208

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 9:331–340

    Google Scholar 

  • Burnay MM, Python CP, Vallotton MB, Capponi AM, Rossier MF (1994) Role of the capacitative calcium influx in the activation of steroidogenesis by angiotensin II in adrenal glomerulosa cells. Endocrinology 135:751–758

    PubMed  CAS  Google Scholar 

  • Burnay MM, Vallotton MB, Capponi AM, Rossier MF (1998) Angiotensin II potentiates the adrenocorticotrophic hormone-induced cyclic AMP formation in bovine adrenal glomerulosa cells through a capacitative calcium influx. Biochem J 330:21–27

    PubMed  CAS  Google Scholar 

  • Campbell DJ (1982) Effect of rat plasma lipoproteins on aldosterone production by rat zona glomerulosa cells in vitro. J Steroid Biochem 17:709–711

    PubMed  CAS  Google Scholar 

  • Campbell WB, Brady MT, Rosolowsky LJ, Falck JR (1991) Metabolism of arachidonic acid by rat adrenal glomerulosa cells: synthesis of hydroxyeicosatetraenoic acids and epoxyeicosatrienoic acids. Endocrinology 128:2183–2194

    PubMed  CAS  Google Scholar 

  • Capponi AM (2002) Regulation of cholesterol supply for mineralocorticoid biosynthesis. Trends Endocrinol Metab 13:118–121

    PubMed  CAS  Google Scholar 

  • Capponi AM, Rossier MF (1996) Regulation of aldosterone secretion. Curr Opin Endocrinol Diabetes 3:248–257

    CAS  Google Scholar 

  • Capponi AM, Lew PO, Jornot L, Vallotton MB (1984) Correlation between cytosolic free calcium and aldosterone production in bovine adrenal glomerulosa cells. J Bioi Chem 259:8863–8869

    CAS  Google Scholar 

  • Capponi AM, Lew PO, Wuthrich R, Vallotton MB(l986a) Effects of atrial natriuretic peptide on the stimulation by angiotensin II of various target cells. J Hypertension 4 [Suppl 2]:S61–S65

    Google Scholar 

  • Capponi AM, Rossier MF, Lang U, Lew PO, Vallotton MB (1986b) Comparison of the signal transduction mechanisms for angiotensin II in adrenal zona glomerulosa and vascular smooth muscle cells. J Hypertension 4 [Suppl 6]:S419–S420

    CAS  Google Scholar 

  • Capponi AM, Lew PO, Vallotton MB (1987) Quantitative analysis of the cytosolic free calcium dependency of aldosterone production in bovine adrenal glomerulosa cells: different requirements for angiotensin II and potassium. Biochem J 247:335–340

    PubMed  CAS  Google Scholar 

  • Capponi AM, Rossier MF, Davies E, Vallotton MB(1988) Calcium stimulates steroidogenesis in permeabilized bovine adrenal cortical cells. J Biol Chem 263:16113–16117

    PubMed  CAS  Google Scholar 

  • Capponi AM, Johnson EIM, Rossier MF, Lang U, Vallotton MB (1989) The calcium messenger system in angiotensin II-induced aldosterone production. In: Mantero F, Takeda R, Scoggins BA, Biglieri EG, Funder JW (eds) The adrenal gland and hypertension: from cloning to clinic. Serono Symposia Publications, Vol 57, Raven Press, New York, pp 45–52

    Google Scholar 

  • Caron KM, Ikeda Y, Soo SC, Stocco OM, Parker KL, Clark BJ (1997) Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Mol Endocrinol 11:138–147

    PubMed  CAS  Google Scholar 

  • Caron KM, Soo SC, Wetsel WC, Stocco OM, Clark BJ, Parker KL (1997) Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci USA 94:11540–11545

    PubMed  CAS  Google Scholar 

  • Casal AJ, Silvestre JS, Delcayre C, Capponi AM (2003) Expression and modulation of steroidogenic acute regulatory protein messenger ribonucleic acid in rat cardiocytes and after myocardial infarction. Endocrinology 144:1861–1868

    PubMed  CAS  Google Scholar 

  • Catt KJ, Carson MC, Hausdorff WP, Leach-Harper CM, Baukal AJ, Guillemette G, Balla T, Aguilera G (1987) Angiotensin II receptors and mechanisms of action in adrenal glomerulosa cells. J Steroid Biochem 27:915–927

    PubMed  CAS  Google Scholar 

  • Catt KJ, Balla T, Baukal AJ, Hausdorff WP, Aguilera G (1988) Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates. Clin Exp Pharmacol Physiol 15:501–515

    PubMed  CAS  Google Scholar 

  • Chartier L, Schiffrin EL (1987) Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells. Am J Physiol 252:E485–E491

    PubMed  CAS  Google Scholar 

  • Chartier L, Schiffrin E, Thibault G, Garcia R (1984) Atrial natriuretic factor inhibits the stimulation of aldosterone secretion by angiotensin II, ACTH and potassium in vitro and angiotensin II-induced steroidogenesis in vivo. Endocrinology 115:2026–2028

    PubMed  CAS  Google Scholar 

  • Chen XL, Bayliss DA, Fern RJ, Barrett PQ (1999) A role for T-type calcium channels in synergistic control of aldosterone production by angiotensin II and potassium. Am J Physiol 276:F674–F683

    PubMed  CAS  Google Scholar 

  • Cherradi N, Rossier MF, Vallotton MB, Capponi AM (1996) Calcium stimulates intramitochondrial cholesterol transfer in bovine adrenal glomerulosa cells. J Biol Chem 271:25971–25975

    PubMed  CAS  Google Scholar 

  • Cherradi N, Rossier MF, Vallotton MB, Timberg R, Friedberg I, Orly J, Wang XJ, Stocco DM, Capponi AM (1997) Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein, P450 side-chain cleavage and 3fJ-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J Biol Chem 272:7899–7907

    PubMed  CAS  Google Scholar 

  • Cherradi N, Brandenburger Y, Rossier MF,Vallotton MB, Stocco DM, Capponi AM (1998) Atrial natriuretic peptide inhibits calcium-induced steroidogenic acute regulatory protein gene transcription in adrenal glomerulosa cells. Mol Endocrinol 12:962–972

    PubMed  CAS  Google Scholar 

  • Cherradi N, Bideau M, Arnaudeau S, Demaurex N, James RW, Azhar S, Capponi AM (2001) Angiotensin II promotes selective uptake of high density lipoprotein cholesterol esters in bovine adrenal glomerulosa cells and human adrenocortical carcinoma cells through induction of scavenger receptor class b type 1. Endocrinology 142:4540–4549

    PubMed  CAS  Google Scholar 

  • Cherradi N, Pardo B, Greenberg AS, Kraemer FB, Capponi AM (2003) Angiotensin II activates cholesterol ester hydrolase in bovine adrenal glomerulosa cells through phosphorylation mediated by p42/p44 MAP kinase. Endocrinology 144:4905–4915

    PubMed  CAS  Google Scholar 

  • Chiou CY, Kifor I, Moore TJ, Williams GH (1994) The effect of losartan on potassiumstimulated aldosterone secretion in vitro. Endocrinology 134:2371–2375

    PubMed  CAS  Google Scholar 

  • Christenson LK, Strauss JF III (2000) Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol. Biochim Biophys Acta 1529:175187

    Google Scholar 

  • Christenson LK, Osborne TF, Mcallister JM, Strauss JF III (2001) Conditional response of the human steroidogenic acute regulatory protein gene promoter to sterol regulatory element binding protein-la. Endocrinology 142:28–36

    PubMed  CAS  Google Scholar 

  • Clark BJ, Combs R (1999) Angiotensin II and cyclic adenosine 3’,5’-monophosphate induce human steroidogenic acute regulatory protein transcription through a common steroidogenic factor-1 element. Endocrinology 140:4390–4398

    PubMed  CAS  Google Scholar 

  • Clark BJ, Stocco DM (1996) StAR-a tissue specific acute mediator of steroidogenesis. Trends Endocrinol Metab 7:227–233

    PubMed  CAS  Google Scholar 

  • Clark BJ, Wells J, King SR, Stocco DM (1994) The purification, cloning and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-lO mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Bioi Chem 269:28314–28322

    CAS  Google Scholar 

  • Clark BJ, Pezzi V, Stocco DM, Rainey WE (1995) The steroidogenic acute regulatory protein is induced by angiotensin II and K+ in H295R adrenocortical cells. Mol Cell Endocrinol 115:215–219

    PubMed  CAS  Google Scholar 

  • Clifford GM, Londos C, Kraemer FB, Yeaman SJ (2000) Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes. J Biol Chem 275:5011–5015

    PubMed  CAS  Google Scholar 

  • Clyne CD, Nguyen A, Rainey WE (1995) The effects of KN62, a Ca2+/calmodulin-dependent protein kinase II inhibitor, on adrenocortical cell aldosterone production. Endocr Res 21:259–265

    PubMed  CAS  Google Scholar 

  • Cohen CJ, McCarthy RT, Barrett PQ, Rasmussen H (1988) Calcium channels in adrenal glomerulosa cells: potassium and angiotensin II increase T-type calcium current. Proc Natl Acad Sci USA 85:2412–2416

    PubMed  CAS  Google Scholar 

  • Colbran RJ, Garton AJ, Cordle SR, Yeaman SJ (1986) Regulation of cholesterol ester hydrolase by cyclic AMP-dependent protein kinase. FEBS Lett 201:257–261

    PubMed  CAS  Google Scholar 

  • Condon JC, Pezzi V, Drummond BM,Yin S, Rainey WE (2002) Calmodulin-dependent kinase 1 regulates adrenal cell expression of aldosterone synthase. Endocrinology 143:3651–3657

    PubMed  CAS  Google Scholar 

  • Conlin PR, Seeiy EW, Hollenberg NK, Williams GH (1998) Dissociation of vascular and adrenal responsiveness to angiotensin II following calcium channel blockade. Endocr Res 24:127–139

    PubMed  CAS  Google Scholar 

  • Cook KG, Yearnan SJ, Stralfors P, Fredrikson G, Belfrage P (1982) Direct evidence that cholesterol ester hydrolase from adrenal cortex is the same enzyme as hormone-sensitive lipase from adipose tissue. Eur J Biochem 125:245–249

    PubMed  CAS  Google Scholar 

  • Cook KG, Colbran RJ, Snee J, Yeaman SJ (1983) Cytosolic cholesterol ester hydrolase from bovine corpus luteum. Its purification, identification and relationship to hormonesensitive lipase. Biochim Biophys Acta 752:46–53

    PubMed  CAS  Google Scholar 

  • Cordle SR, Colbran RJ, Yearnan SJ (1986) Hormone-sensitive lipase from bovine adipose tissue. Biochim Biophys Acta 887:51–57

    PubMed  CAS  Google Scholar 

  • Cote M, Payet MD, Dufour MN, Guillon G, Gallo-Payet N (1997) Association of the G protein alpha(q)/alphall-subunit with cytoskeleton in adrenal glomerulosa cells: role in receptor-effector coupling. Endocrinology 38:3299–3307

    Google Scholar 

  • Cote M, Muyldermans J, Chouinard L, Gallo-Payet N (1998) Involvement of tyrosine phosphorylation and MAPK activation in the mechanism of action of ACTH, angiotensin Il and vasopressin. Endocr Res 24:415–419

    PubMed  CAS  Google Scholar 

  • Cozza EN, Chiou S, Gomez-Sanchez CE (1992) Endothelin-I potentiation of angiotensin II stimulation of aldosterone production. Am J Physiol 262:R85–R89

    PubMed  CAS  Google Scholar 

  • Cozza EN, Gomezsanchez CE (1993) Mechanisms of ET-l potentiation of angiotensin-Il stimulation of aldosterone production. Am J Physiol 265:EI79–EI83

    Google Scholar 

  • Davies E, Bonnardeaux A, Plouin PF, Corvol P, Clauser E (1997) Somatic mutations of the angiotensin II (AT!) receptor gene are not present in aldosterone-producing adenoma. J Clin Endocrinol Metab 82:611–615

    PubMed  CAS  Google Scholar 

  • Denner K, Rainey WE, Pezzi V, Bird IM, Bernhardt R, Mathis JM (1996) Differential regulation of 11 beta-hydroxylase and aldosterone synthase in human adrenocortical H295R cells. Mol Cell Endocrinol 21:87–91

    Google Scholar 

  • Elliott ME, Goodfriend TL (1986) Inhibition of aldosterone synthesis by atrial natriuretic factor. Fed Proc 45:2376–2381

    PubMed  CAS  Google Scholar 

  • Elliott M.E. Alexander R.C. Goodfriend T.L. 1982 Aspects of angiotensin action in the adrenal. Key roles for calcium and phosphatidyl inositol. Hypertension 4:52–53

    PubMed  CAS  Google Scholar 

  • Elliott ME, Siegel FL, Hadjokas NE, Goodfriend TL (1985) Angiotensin effects on calcium and steroidogenesis in adrenal glomerulosa cells. Endocrinology 116:1051–1059

    PubMed  CAS  Google Scholar 

  • Ely JA, Ambroz C, Baukal AJ, Christensen SB, Balla T, Catt KJ (1991) Relationship between agonist-and thapsigargin-sensitive calcium pools in adrenal glomerulosa cells: thapsigargin-induced calcium mobilization and entry. J Bioi Chem 266:18635–18641

    CAS  Google Scholar 

  • Enyedi P, Spat A, Antoni FA (1981) Role of prostaglandins in the control of the function of adrenal glomerulosa cells. J Endocrinol 91:427–437

    PubMed  CAS  Google Scholar 

  • Enyedi P, Buki B, Muscsi I, Spat A (1985) Polyphosphoinositide metabolism in adrenal glomerulosa cells. Mol Cell Endocrinol 41:105–112

    PubMed  CAS  Google Scholar 

  • Enyedi P, Spat A (1987) The mechanism of angiotensin-induced desensitization of adrenal glomerulosa cells. Mol Cell Endocrinol 51:83–86

    PubMed  CAS  Google Scholar 

  • Enyedi P, Balla T, Antoni FA, Spat A (1988) Effect of angiotensin 11 and arginine vasopres sin on aldosterone production and phosphoinositide turnover in rat adrenal glomerulosa cells: a comparative study. J Mol Endocrinol l:117–124

    Google Scholar 

  • Enyedi P, Szabadkai G, Horvath A, Szilagyi L, Graf L, Spat A (1994) Inositoll,4,5-trisphosphate receptor subtypes in adrenal glomerulosa cells. Endocrinology 134:2354–2359

    PubMed  CAS  Google Scholar 

  • Fakunding JL, Catt KJ (1980) Dependence of aldosterone stimulation in adrenal glomerulosa cells on calcium uptake: effects of lanthanum and verapamil. Endocrinology 107:1345–1353

    PubMed  CAS  Google Scholar 

  • Fakunding JL, Catt KJ (1982) Calcium-dependent regulation of aldosterone production in isolated adrenal glomerulosa cells: effects of the ionophore A-23187. Endocrinology 110:2006–2010

    PubMed  CAS  Google Scholar 

  • Fakunding JL, Chow R, Catt KJ (1979) The role of calcium in the stimulation of aldosterone production by adrenocorticotropin, angiotensin II, and potassium in isolated glomerulosa cells. Endocrinology 105:327–333

    PubMed  CAS  Google Scholar 

  • Farago A, Seprodi J, Spat A (1988) Subcellular distribution of protein kinase C in rat adrenal glomerulosa cells. Biochem Biophys Res Commun 156:628–633

    PubMed  CAS  Google Scholar 

  • Farese RV, Larson RE, Davis JS (1984) Rapid effect of angiotensin II on polyphosphoinositide metabolism in the rat adrenal glomerulosa. Endocrinology 114:302–304

    PubMed  CAS  Google Scholar 

  • Fern RJ, Hahm MS, Lu H-K, Liu L-P, Gorelick FS, Barrett PQ (1995) Calcium/calmodulindependent protein kinase II activation and regulation of adrenal glomerulosa calcium signaling. Am J Physiol 269:F751–F760

    PubMed  CAS  Google Scholar 

  • Feuilloley M, Vaudry H (1996) Role of the cytoskeleton in adrenocortical cells. Endocr Rev 17:269–288

    PubMed  CAS  Google Scholar 

  • Finkel MS, Aguilera G, Catt KJ, Keiser HR (1984) [3H]nitrendipine binding to adrenal capsular membranes. Life Sci 35:905–910

    PubMed  CAS  Google Scholar 

  • Fitzpatrick SC, McKenna TJ (1992) Evidence for a tonic inhibitory role of nifedipine-sensitive calcium channels in aldosterone biosynthesis. J Steroid Biochem Mol Biol 42:575–580

    PubMed  CAS  Google Scholar 

  • Fong TH, Yang CC, Greenberg AS, Wang SM (2002) Immunocytochemical studies on lipid droplet-surface proteins in adrenal cells. J Cell Biochem 86:432–439

    PubMed  CAS  Google Scholar 

  • Foster R, Rasmussen H (1983) Angiotensin-mediated calcium efflux from adrenal glomerulosa cells. Am J Physiol 245:E281–E287

    PubMed  CAS  Google Scholar 

  • Foster R, Lobo MV, Rasmussen H, Marusic ET (1981) Calcium: its role in the mechanism of action of angiotensin II and potassium in aldosterone production. Endocrinology 109:2196–2201

    PubMed  CAS  Google Scholar 

  • Foster RH, Davis JS, Farese RV(1990) External calcium is required for act ivation of phospholipase C by angiotensin 11 in adrenal glomerulosa cells. Mol Cell Biochem 95:157–166

    PubMed  CAS  Google Scholar 

  • Foster RH, MacFarlane CH, Bustamante MO (1997) Recent progress in understanding aldosterone secretion. Gen Pharmacol 28:647–651

    PubMed  CAS  Google Scholar 

  • Franco-Saenz R, Atarashi K, Takagi M, Takagi M, Mulrow PJ (1989) Effect of atrial natriuretic factor on renin and aldosterone. J Cardiovasc Pharmacol 13 [Suppl 6]:S31–S35

    PubMed  CAS  Google Scholar 

  • Freed MI, Rastegar A, Bia MJ (1991) Effects of calcium channel blockers on potassium homeostasis. Yale J Bioi Med 64:177–186

    CAS  Google Scholar 

  • Fujisawa G, Dilley R, Fullerton MJ, Funder JW (2001) Experimental cardiac fibrosis: differential time course of responses to mineralocorticoid-salt administration. Endocrinol 142:3625–3631

    CAS  Google Scholar 

  • Galtier A, Liakos P, Keramidas M, Feige JJ, Chambaz EM, Defaye G (1996) ACTH angiotensin II and TGF beta participate in the regulation of steroidogenesis in bovine adrenal glomerulosa cells. Endocr Res 22:607–612

    PubMed  CAS  Google Scholar 

  • Ganguly A (1992) Atrial natriuretic peptide-induced inhibition of aldosterone secret ion: a quest for mediator(s). Am J Physiol 263:EI81–EI94

    Google Scholar 

  • Ganguly A, Davis JS (1994) Role of calcium and other mediators in aldosterone secretion from the adrenal glomerulosa cells. Pharmacol Rev 46:417–447

    PubMed  CAS  Google Scholar 

  • Ganguly A, Waldron C (1994) Comparative effects of a highly specific protein kinase C inhibitor, calphostin C and calmodulin inhibitors on angiotensin-stimulated aldosterone secretion. J Steroid Biochem Mol Bioi 50:253–260

    CAS  Google Scholar 

  • Ganguly A, Chiou S, West LA, Davis JS (1989) Atrial natriuretic factor inhibits angiotensin-induced aldosterone secretion: not through cGMP or interference with phospholipase C. Biochem Biophys Res Commun 159:148–154

    PubMed  CAS  Google Scholar 

  • Ganguly A, Chiou S, Fineberg NS, Davis JS (1992) Greater importance of Ca(2+ )-calmodulin in maintenance of ang 11-and K(+)-mediated aldosterone secretion: lesser role of protein kinase C. Biochem Biophys Res Commun 182:254–261

    PubMed  CAS  Google Scholar 

  • Ganguly A, Li L, Haxton M (1995) Inhibition of angiotensin 11-and potassium-mediated aldosterone secretion by KN-62 suggests involvement of Ca(2+ )-calmodulin dependent protein kinase 11 in aldosterone secretion. Biochem Biophys Res Commun 209:916–920

    PubMed  CAS  Google Scholar 

  • Ganong WF, Mulrow PJ, Boryczka A, Cera G (1962) Evidence for a direct effect of angiotensin 11 on adrenal cortex of the dog. Proc Soc Exp Biol Med 109:381–384

    PubMed  CAS  Google Scholar 

  • Ganten D, Hermann K, Unger T, Lang RE (1983) The tissue renin-angiotensin systems: focus on brain angiotensin, adrenal gland and arterial wall. Clin Exp Hypertens A 5:1099–1118

    PubMed  CAS  Google Scholar 

  • Gigante B, Rubattu S, Russo R, Porcellini A, Enea I, De Paolis P, Savoia C, Natale A, Piras O, Volpe M (1997) Opposite feedback control of renin and aldosterone biosynthesis in the adrenal cortex by angiotensin 11 ATl-subtype receptors. Hypertension 30:563–568

    PubMed  CAS  Google Scholar 

  • Gomez-Sanchez CE, Zhou MY, Cozza EN, Morita H, Foecking MF, Gomez-Sanchez EP (1997) Aldosterone biosynthesis in the rat brain. Endocrinology 138:3369–3373

    PubMed  CAS  Google Scholar 

  • Greenberg AS, Egan JJ, Weck SA, Moos MC, Londos C, Kimmel AR (1993) Isolation of cDNAs for perilipins A and B: sequence and expression of lipid droplet-associated proteins of adipocytes. Proc Natl Acad Sci USA 90:12035–12039

    PubMed  CAS  Google Scholar 

  • Gu JL, Natarajan R, Ben-Ezra J, Valente G, Scott S, Yoshimoto T, Yamamoto S, Rossi JJ, Nadler J (1994) Evidence that a leukocyte type of 12-lipoxygenase is expressed and regulated by angiotensin 11 in human adrenal glomerulosa cells. Endocrinology 134:70–77

    PubMed  CAS  Google Scholar 

  • Gu J, Wen Y, Mison A, Nadler JL (2003) I2-Lipoxygenase pathway increases aldosterone production, 3’,5’-cyclic adenosine monophosphate response element-binding protein phosphorylation, and p38 mitogen-activated protein kinase activation in H295R human adrenocortical cells. Endocrinology 144:534–543

    PubMed  CAS  Google Scholar 

  • Guillemette G, Segui JA (1988) Effects of pH, reducing and alkylating reagents on the binding and Ca2+ release activities of inositol 1,4,5-triphosphate in the bovine adrenal cortex. Mol Endocrinol 2:1249–1255

    PubMed  CAS  Google Scholar 

  • Guillemette G, Balla T, Baukal AJ, Spat A, Catt KJ (1987) Intracellular receptors for inositol 1,4,5-trisphosphate in angiotensin II target tissues. J Biol Chem 262:1010–1015

    PubMed  CAS  Google Scholar 

  • Guillemette G, Favreau I, Boulay G, Potier M (1990) Solubilization and partial characterization of inositol 1,4,5-trisphosphate receptor of bovine adrenal cortex reveal similarities with the receptor of rat cerebellum. Mol Pharmacol 38:841–847

    PubMed  CAS  Google Scholar 

  • Guillon G, Trueba M, Joubert D, Grazzini E, Chouinard L, Cote M, Payet MD, Manzoni 0, Barberis C, Roert M, Gallo-Payet N (1995) Vasopressin stimulates steroid secretion in human adrenal glands: comparison with angiotensin-II effects. Endocrinology 136:1285–1295

    PubMed  CAS  Google Scholar 

  • Gupta P, Franco-Saenz R, Mulrow PJ (1995) Locally generated angiotensin 11 in the adrenal gland regulates basal, corticotropin-, and potassium-stimulated aldosterone secretion. Hypertension 25:443–448

    PubMed  CAS  Google Scholar 

  • Gyles SL, Burns CJ, Whitehouse BJ, Sugden D, Marsh PJ, Persaud SJ, Jones PM (2001) ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. J Biol Chem 276:34888–34895

    PubMed  CAS  Google Scholar 

  • Hadjokas NE, Goodfriend TL (1991) Inhibition of aldosterone production and angiotensin action by drugs affecting potassium channels. Pharmacology 43:141–150

    PubMed  CAS  Google Scholar 

  • Hajnoczky G, Varnai P, Hollo Z, Christensen SB, Balla T, Enyedi P, Spat A (1991) Thapsigargin-induced increase in cytoplasmic calcium concentration and aldosterone production in rat adrenal glomerulosa cells: interaction with potassium and angiotensin 11. Endocrinology 128:2639–2644

    PubMed  CAS  Google Scholar 

  • Hajnoczky G, Csordas G, Bago A, Chiu AT, Spat A (l992a) Angioten sin 11 exerts its effect on aldosterone production and potassium permeability through receptor subtype ATl in rat adrenal glomerulo sa cells. Biochem Pharmaco 43:1009–1012

    Google Scholar 

  • Hajnoczky G, Varnai P, Buday L, Farago A, Spat A (l992b) The role of protein kinase-C in control of aldosterone production by rat adrenal glomerulosa cells: activation of protein kinase-C by stimulation with potassium. Endocrinology 130:2230–2236

    Google Scholar 

  • Harada E, Yoshimura M, Yasue H, Nagakawa 0, Nagakawa M, Harada M, Mizuno Y, Nakayama M, Shimasaki Y, Ito T, Nakamura S, Kuwahara K, Saito Y, Nakao K, Ogawa H (2001) Aldosterone induce s angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 104:137–139

    PubMed  CAS  Google Scholar 

  • Hasegawa T, Zhao L, Caron KM, Majdic G, Suzuki T, Shizawa S, Sasano H, Parker KL (2000) Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice. Mol Endocrino 14:1462–1471

    CAS  Google Scholar 

  • Hatakeyama H, Miyamori I, Fujita T, Takeda Y, Takeda R, Yamamoto H (1994) Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem 269:24316–24320

    CAS  Google Scholar 

  • Hausdorff WP, Sekura RD, Aguilera G, Catt KJ (1987) Control of aldosterone production by angiotensin 11 is mediated by two guanine nucleotide regulatory proteins. Endocrinology 120:1668–1678

    PubMed  CAS  Google Scholar 

  • Hayashi M, Tsutamoto T, Wada A, Maeda K, Mabuchi N, Tsutsui T, Matsui T, Fujii M, Matsumoto T, Yamamoto T, Horie H, Ohnishi M, Kinoshita M (2001) Relationship between transcardiac extraction of aldosterone and left ventricular remodeling in patients with first acute myocardial infarction: extracting aldosterone through the heart promotes ventricular remodeling after acute myocardi al infarction. JAm Coli Cardiol 38:1375–1382

    CAS  Google Scholar 

  • Hescheler J, Rosenthal W, Hinsch K-D, Wulfern M, Trautwein W, Schulz G (1988) Angiotensin II-induced stimulation of voltage-dependent calcium currents in an adrenal cortical cell line. EMBO J 7:619–624

    PubMed  CAS  Google Scholar 

  • Higashijima M, Nawata H, Kato H, Ibayashi H (1987) Studies on lipoprotein and adrenal steroidogenesis: I. Roles of low density lipoprotein-and high density lipoproteincholesterol in steroid production in cultured human adrenocortical cells. Endocrinologia Japonica 34:635–645

    CAS  Google Scholar 

  • Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ (1991) Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475–482

    PubMed  CAS  Google Scholar 

  • Horiba N, Nomura K, Shizume K (1990) Exogenous and locally synthesized angiotensin 11 and glomerulosa cell functions. Hypertension 15:190–197

    PubMed  CAS  Google Scholar 

  • Horvath A, Szabadkai G, Varnai P, Aranyi T, Wollheim CB, Enyedi P (1998) Voltage-dependent calcium channels in adrenal glomerulosa cells and in insulin producing cells. Cell Calcium 23:33–42

    PubMed  CAS  Google Scholar 

  • Hunyady L, Balla T, Enyedi P, Spat A (1985) The effect of angiotensin 11 on arachidonate metabolism in adrenal glomerulosa cells. Biochem Pharmacol 34:3439–3444

    PubMed  CAS  Google Scholar 

  • Hunyady L, Baukal AJ, Bor M, Ely JA, Catt KJ (1990) Regulation of 1,2-diacylglycerol production by angiotensin 11 in bovine adrenal glomerulosa cells. Endocrinology 126:1001–1008

    PubMed  CAS  Google Scholar 

  • Inagami T (1995) Recent progress in molecular and cell biological studies of angiotensin receptors. Curr Opin Nephrol Hypertens 4:47–54

    PubMed  CAS  Google Scholar 

  • Irvine RF (1990) “Quantal” calcium release and the control of calcium entry by inositol phosphates: a possible mechanism. FEBS Lett 263:5–9

    PubMed  CAS  Google Scholar 

  • Johnson EIM, Capponi AM, Vallotton MB (1989) Cytosolic free calcium oscillates in single bovine adrenal glomerulosa cells in response to angiotensin 11 stimulation. J Endocrinol 122:391–402

    PubMed  CAS  Google Scholar 

  • Jung E, Betancourt-Calle S, Mann-Blakeney R, Foushee T, Isales CM, Bollag WB (1998) Sustained phospholipase D activation in response to angiotensin 11 but not carbachol in bovine adrenal glomerulosa cells. Biochem J 330:445–451

    PubMed  CAS  Google Scholar 

  • Kanazirska MV, Vassilev PM, Quinn SJ, Tillotson DL, Williams GH (1992) Single potassium channels in adrenal zona glomerulosa cells: 11. Inhibition by angiotensin 11. Am J Physiol 263:E760–E765

    PubMed  CAS  Google Scholar 

  • Kapas S, Hinson JP, Puddefoot JR, Ho MM, Vinson GP (1994) Internalization of the type I angiotensin II receptor (AT1) is required for protein kinase C activation but not for inositol trisphosphate release in the angiotensin 11 stimulated rat adrenal zona glomerulosa cell. Biochem Biophys Res Commun 204:1292–1298

    PubMed  CAS  Google Scholar 

  • Kapas S, Purbrick A, Hinson JP (1995) Role of tyrosine kinase and protein kinase C in the steroidogenic actions of angiotensin !I, alpha-melanocyte-stimulating hormone and corticotrophin in the rat adrenal cortex. Biochem J 305:433–438

    PubMed  CAS  Google Scholar 

  • Kayes-Wandover KM, White PC (2000) Steroidogenic enzyme gene expression in the human heart. J Clin Endocrinol Metab 85:2519–2525

    PubMed  CAS  Google Scholar 

  • Kigoshi T, Uchida K, Morimoto S (1988) Existence of endogenous substrate proteins for calcium/calmodulin-dependent and calcium/phospholipid-dependent protein kinases in rat adrenal glomerulosa cells. J Steroid Biochem 29:277–283

    PubMed  CAS  Google Scholar 

  • Kiiveri S, Liu J, Westerholm-Ormio M, Narita N, Wilson DB, Voutilainen R, Heikinheimo M (2002) Differential expression of GATA-4 and GATA-6 in fetal and adult mouse and human adrenal tissue. Endocrinology 143:3136–3143

    PubMed  CAS  Google Scholar 

  • Klemcke HG (1992) Hormonal and stressor-associated changes in porcine adrenocortical cholesterol ester hydrolase activity. J Steroid Biochem Mol Biol 43:725–739

    PubMed  CAS  Google Scholar 

  • Kojima I, Kojima K, Kreutter D, Rasmussen H (1984a) The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J Biol Chem 259:14448–14457

    CAS  Google Scholar 

  • Kojima K, Kojima I, Rasmussen H (1984b) Dihydropyridine calcium agonist and antagonist effects on aldosterone secretion. Am J Physio 247:E645–E650

    CAS  Google Scholar 

  • Kojima I, Kojima K, Rasmussen H (1985a) Effects of ANG Il and K+ on Ca efflux and aldosterone production in adrenal glomerulosa cells. Am J Physiol 248:E36–E43

    CAS  Google Scholar 

  • Kojima I, Kojima K, Rasmussen H (1985b) Possible role of phospholipase A2 action and arachidonic acid metabolism in angiotensin II-mediated aldosterone secretion. Endocrinology 117:1057–1066

    CAS  Google Scholar 

  • Kojima I, Kojima K, Rasmussen H (1985c) Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from adrenal glomerulosa cells. J Biol Chem 260:9177–9184

    CAS  Google Scholar 

  • Kojima I, Shibata H, Ogata E (1986a) Pertussis toxin blocks angiotensin II-induced calcium influx but not inositol trisphosphate production in adrenal glomerulosa cells. FEBS Lett 204:347–351

    CAS  Google Scholar 

  • Kojima I, Shibata H, Ogata E (1986b) Phorbol ester inhibits angiotensin II-induced activation of phospholipase C in adrenal glomerulosa cells. Biochem J 237:253–258

    CAS  Google Scholar 

  • Kojima I, Kawamura N, Shibata H (1994) Rate of calcium entry determines the rapid changes in protein kinase C activity in angiotensin II-stimulated adrenal glomerulosa cells. Biochem J 297:523–528

    PubMed  CAS  Google Scholar 

  • Koletsky RJ, Brown EM, Williams GH (1983) Calmodulin-like activity and calcium-dependent phosphodiesterase in purified cells of the rat zona glomerulosa and zona fasciculata. Endocrinology 113:485–490

    PubMed  CAS  Google Scholar 

  • Kovanen PT, Basu SK, Goldstein JL, Brown MS (1979) Low density lipoprotein receptors in bovine adrenal cortex. II. Lowdensity lipoprotein binding to membranes prepared from fresh tissue. Endocrinology 104:610–616

    Google Scholar 

  • Kraemer FB, Tavangar K, Hoffman AR (1991) Developmental regulation ofhormone-sensitive lipase mRNA in the rat: changes in steroidogenic tissue s. J Lipid Res 32:1303–1310

    PubMed  CAS  Google Scholar 

  • Kraemer FB, Patel S, Saedi MS, Sztalryd C (1993) Detection of hormone-sensitive lipase in various tissues. I. Expression of an HSL/bacterial fusion protein and of anti-HSL antibodies. J Lipid Res 34:663–671

    PubMed  CAS  Google Scholar 

  • Kraemer FB, Shen WJ, Natu V, Patel S, Osuga J, Ishibashi S, Azhar S (2002) Adrenal neutral cholesteryl ester hydrolase: identification, subcellular distribution, and sex differences. Endocrinology 143:801–806

    PubMed  CAS  Google Scholar 

  • Kramer RE (1993) Effects of diltiazem on calcium metabolism in cultured bovine glomerulosa cells: relationships to the actions of angiotensin 11 and potas sium. J Pharmacol Exp Ther 266:374–384

    PubMed  CAS  Google Scholar 

  • Kroon PA, Thompson MG, Chao YS (1984) A comparison of the low-density-lipoprotein receptor from bovine adrenal cortex, rabbit and rat liver and adrenal glands by lipoprotein blotting. Biochem J 223:329–335

    PubMed  CAS  Google Scholar 

  • Kubo M, Strott CA (1988) Calcium-dependent protein kinase activity and protein phosphorylation in zones of the adrenal cortex. J Steroid Biochem 29:407–413

    PubMed  CAS  Google Scholar 

  • Lalli E, Sassone-Corsi P (1999) DAX-l and the adrenal cortex. Curr Opin Endocrinol Diabetes 6:185–190

    CAS  Google Scholar 

  • Landschulz KT, Pathak RK, Rigotti A, Krieger M, Hobbs HH (1996) Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissue s of the rat. J Clin Invest 98:984–995

    PubMed  CAS  Google Scholar 

  • Lang U, Vallotton MB(1987) Angiotensin II but not potassium induces subcellular redistribution of protein kinase C in bovine adrenal glomerulosa cells. J Biol Chem 262:8047–8050

    PubMed  CAS  Google Scholar 

  • Lang U, Daniel C, Chardonnens D, Capponi AM, Vallotton MB(1991) Modulatory effects of protein kinase C activation in aortic smooth muscle and adrenal glomerulosa cells during angiotensin 11 stimulation. In: Reid E, Cook GMW, Luzion JP (eds) Cell signalling: experimental strategies. Royal Society of Chemistry, Cambridge, UK, pp 115–126

    Google Scholar 

  • Laragh JH, Angers M, Kelly WG, Liebermann S (1960) Hypotensive agents and pressor substances. The effect of epinephrine, norepinephrine, angiotensin II and others on the secretory rate of aldosterone in man. JAMA 174:234–240

    PubMed  CAS  Google Scholar 

  • Le Menuet D, Isnard R, Bichara M, Viengchareun S, Muffat-Joly M, Walker F, Zennaro MC, Lombes M (2001) Alteration of cardiac and renal functions in transgenic mice overexpressing human mineralocorticoid receptor. J Biol Chem 276:38911–38920

    PubMed  Google Scholar 

  • Lee TG, Lee YH, Kim JH, Kim HS, Suh PG, Ryu SH (1997) Immunological identification of cholesterol ester hydrolase in the steroidogenic tissues, adrenal glands and testis. Biochim Biophys Acta 1346:103–108

    PubMed  CAS  Google Scholar 

  • Lefebvre H, Contesse V, Delarue C, Legrand A, Kuhn JM, Vaudry H, Wolf LM (1995) The serotonin-4 receptor agonist cisapride and angiotensin 11 exert additive effects on aldosterone secretion in normal man. J Clin Endocrinol Metab 80:504–507

    PubMed  CAS  Google Scholar 

  • LeHoux JG, Lefebvre A (1991) Short-term effects of ACTHon the low-density lipoprotein receptor mRNAlevel in rat and hamster adrenals. J Mol Endocrinol 6:223–230

    PubMed  CAS  Google Scholar 

  • LeHoux JG, Lefebvre A, De Medicis E, Belisle S, Bellabarba D (1989) The enhancing effect of adrenocorticotropin on adrenal 3-hydroxy-3-methylglutaryl eoenzyme A reductase messenger ribonucleic acid level is inhibited by aminoglutethimide but not by cycloheximide. Endocrinology 125:158–164

    PubMed  CAS  Google Scholar 

  • LeHoux JG, Dupuis G, Lefebvre A (2001) Control of CYPIIB2 gene expression through differential regulation of its promoter by atypical and conventional protein kinase C isoforms. J Biol Chem 276:8021–8028

    PubMed  CAS  Google Scholar 

  • Leitersdorf E, Stein 0, Stein Y (1985) Angiotensin II stimulates receptor-mediated uptake of LDL by bovine adrenal cortical cells in primary culture. Biochim Biophys Acta 835:183–190

    PubMed  CAS  Google Scholar 

  • Lekstrom-Himes J, Xanthopoulos KG (1998) Biological role of the CCAAT/enhancerbinding protein family of transcription factors. J Biol Chem 273:28545–28548

    PubMed  CAS  Google Scholar 

  • Leonetti G, Terzoli L, Zanchetti A (1987) Calcium antagonists and responsiveness of the adrenal glands to aldosterone-releasing stimuli in hypertensive patients. J Hypertens Supp 5:S119–S122

    CAS  Google Scholar 

  • Lesouhaitier 0, Chiappe A, Rossier MF (2001) Aldosterone increases T-type calcium currents in human adrenocarcinoma (H295R) cells by inducing channel expression. Endocrinology 142:4320–4330

    PubMed  CAS  Google Scholar 

  • Li H, Brochu M, Wang SP, Rochdi L, Cote M, Mitchell G, Gallo-Payet N (2002) Hormonesensitive lipase deficiency in mice causes lipid storage in the adrenal cortex and impaired corticosterone response to corticotropin stimulation. Endocrinology 143:3333–3340

    PubMed  CAS  Google Scholar 

  • Linde R, Winn S, Latta D, Hollifield J (1981) Graded dose effects of angiotensin II on aldosterone production in man during various levels of potassium intake. Metabolism 30:549–553

    PubMed  CAS  Google Scholar 

  • Lobo MV, Marusic ET (1986) Effect of angiotensin II, ATP, and ionophore A23187 on potassium efflux in adrenal glomerulosa cells. Am J Physiol 250:EI25–EI30

    Google Scholar 

  • Lobo MV, Marusic ET (1988) Angiotensin II causes a dual effect on potassium permeability in adrenal glomerulosa cells. Am J Physiol 254:EI44–EI49

    Google Scholar 

  • Lobo MV, Marusic ET (1991) Contrasting effects of sn-l,2-dioctanoyl glycerol as compared to other protein kinase C activators in adrenal glomerulosa cells. J Steroid Biochem Mol Bioi 39:323–327

    CAS  Google Scholar 

  • Lobo MV, Mendoza RR, Marusic ET (1990) sn-l,2 dioctanoylglycerol mimics the effects of angiotensin II on aldosterone production and potassium permeability in isolated bovine glomerulosa cells. J Steroid Biochem 35:29–33

    PubMed  CAS  Google Scholar 

  • Lotshaw DP (1997a) Characterization of angiotensin II-regulated potassium conductance in rat adrenal glomerulosa cells. J Membrane Bioi 156:261–277

    CAS  Google Scholar 

  • Lotshaw DP (1997b) Effects of potassium channel blockers on potassium channels, membrane potential, and aldosterone secretion in rat adrenal zona glomerulosa cells. Endocrinology 138:4167–4175

    CAS  Google Scholar 

  • Lotshaw DP (2001) Role of membrane depolarization and T-type Ca2+ channels in angiotensin 11 and K+ stimulated aldosterone secretion. Mol Cell Endocrinol 175:157–171

    PubMed  CAS  Google Scholar 

  • Lu H-K, Fern RJ, Nee JJ, Barrett PQ (1994) Calcium-dependent activation of T-type calcium channels by calmodulin-dependent protein kinase II. Am J Physiol 267:FI83–F189

    Google Scholar 

  • Lu H-K, Fern RJ, Luthin D, Linden J, Liu L-P, Cohen CJ, Barrett PQ (1996) Angiotensin II stimulates T-type calcium channel currents via activation of a G protein, Gi. Am J Physio 271:C1340–C1349

    CAS  Google Scholar 

  • Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, Kimmel AR (2001) The murine perilipin gene: the lipid droplet-associated perilipins derive from tissuespecific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 12:741–749

    PubMed  CAS  Google Scholar 

  • Lumbers ER (1999) Angiotensin and aldosterone. Regul Pept 80:91–100

    PubMed  CAS  Google Scholar 

  • Malendowicz LK, Rebuffat P, Nussdorfer GG, Nowak KW (1998) Corticotropin-inhibiting peptide enhances aldosterone secretion by dispersed rat zona glomerulosa cells. J Steroid Biochem Mol Bioi 67:149–152

    CAS  Google Scholar 

  • Manna PR, Dyson MT, Eubank DW, Clark BJ, Lalli E, Sassone-Corsi P, Zeleznik AI, Stocco DM (2002) Regulation of stero idogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol 16:184–199

    PubMed  CAS  Google Scholar 

  • Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375:247–250

    PubMed  CAS  Google Scholar 

  • Martin G, Pilon A, Albert C, Valle M, Hum DW, Fruchart JC, Najib J, Clavey V, Staels B (1999) Comparison of expression and regulation of the high-density lipoprotein receptor SR-Bl and the low-density lipoprotein receptor in human adrenocortical carcinoma NCI-H295 cells. Eur J Biochem 261:481–491

    PubMed  CAS  Google Scholar 

  • Martinez DV, Rocha R, Matsumura M, Oestreicher E, Ochoa-Maya M, Roubsanthisuk W, Williams GH, Adler GK (2002) Cardiac damage prevention by eplerenone: comparison with low sodium diet or potas sium loading. Hypertension 39:614–618

    PubMed  CAS  Google Scholar 

  • Martinez-Botas J, Anderson JB, Tessier D, Lapillonne A, Chang BH, Quast MJ, Gorenstein D, Chen KH, Chan L (2000) Absence of perilipin results in leann ess and reverses obesity in Lepr(db/db) mice. Nat Genet 26:474–479

    PubMed  CAS  Google Scholar 

  • Mason JI, Rainey WE (1987) Steroidogenesis in the human fetal adrenal: a role for cholesterol synthesized de novo. J Clin Endocrinol Metab 64:140–147

    PubMed  CAS  Google Scholar 

  • Matsunaga H, Maruyama Y, Kojima I, Hoshi T (1987a) Transient calcium channel current characterized by a low threshold voltage in zona glomerulosa cells of rat adrenal cortex. Pflugers Arch 408:351–355

    CAS  Google Scholar 

  • Matsunaga H, Yamashita N, Maruyama Y, Kojima I, Kurokawa K (1987b) Evidence for two distinct voltage-gated calcium channel cur rents in bovine adrenal glomerulosa cells. Biochem Biophys Res Commun 149:1049–1054

    CAS  Google Scholar 

  • Matsuoka H, Ishii M, Sugimoto T, Hirata Y, Sugimoto T, Kangawa K, Matsuo H (1985) Inhibition of aldosterone production by alpha-human atrial natriuretic polypeptide is associated with an increa se in cGMP production. Biochem Biophys Res Commun 127:1052–1056

    PubMed  CAS  Google Scholar 

  • Matsuoka H, Ishii M, Hirata Y, Atarashi K, Sugimoto T, Kangawa K, Matsuo H (1987) Evidence for lack of a role of cGMP in effect of alpha-hANP on aldosterone inhibition. Am J Physio 252:E643–E647

    CAS  Google Scholar 

  • Maturana AD, Burnay MM, Capponi AM, Vallotton MB, Rossier MF (1999a) Angiotensin Il type 1 receptor activation modulates L-and T-type calcium channel activity through distinct mechanism s in bovine adrenal glomerulosa cells. J Recept Signal Transduc Res 19:509–520

    CAS  Google Scholar 

  • Maturana AD, Casal AJ, Demaurex N, Vallotton MB, Capponi AM, Rossier MF (1999b) Angiotensin Il negatively modulates L-type calcium channels through a pertussis toxin-sensitive G protein in adrenal glomerulosa cells. J Biol Chem 274:19943–19948

    CAS  Google Scholar 

  • Maume G, Filali-Ansary A, Giannini E, Hathout Y, Fischbach M, Maume BF (1991) Aldosterone biosynthesis induced by ACTHand angiot ensin II in newborn rat adrenocortical cells transfected by c-El-Ha-ras oncogene. Biochem Biophys Res Commun 175:596–603

    PubMed  CAS  Google Scholar 

  • Mazzocchi G, Markowska A, Malendowicz LK, Musajo F, Meneghelli V, Nussdorfer GG (1993) Evidence that endogenous arginine-vasopressin (AVP) is involved in the maintenance of the growth and stero idogenic capacity of rat adrenal zona glomerulosa. J Steroid Biochem Mol Bioi 45:251–256

    CAS  Google Scholar 

  • Mazzocchi G, Macchi C, Malendowicz LK, Nussdorfer GG (1995) Evidence tha t endogenous substance-P (SP) is involved in the maintenance of the growth and stero idogenic capacity of rat adrenal zona glomerulosa. Neuropeptides 29:53–58

    PubMed  CAS  Google Scholar 

  • McCarthy RT, Isales CM, Bollag WB, Rasmussen H, Barrett PQ (1990) Atrial natriuretic peptide differentially modulates T-and L-type calcium channels. Am J Physiol 258:F473–F478

    PubMed  CAS  Google Scholar 

  • McCarthy RT, Isales CM, Rasmussen H (1993) T-type calcium channels in adrenal glomerulosa cells: GTP-dependent modulation by angiotensin n. Proc Nat Acad Sci USA 90:3260–3264

    PubMed  CAS  Google Scholar 

  • McMahon E.G. 2001 Recent studies with eplerene a vel selective aldosterone receptor antagonist. Curr Opin Pharmacoll 1:190–196

    CAS  Google Scholar 

  • McNeill H, Vinson GP (2000) Regulation of MAPK activity in response to dietary sodium in the rat adrenal gland. Endocr Res 26:879–883

    PubMed  CAS  Google Scholar 

  • McNeill H, Puddefoot JR, Vinson GP (1998) MAP kinase in the rat adrenal gland. Endocr Res 24:373–380

    PubMed  CAS  Google Scholar 

  • Mikami K, Nishikawa T, Saito Y, Tamura Y, Matsuoka N, Kumagai A, Yoshida S (1984) Regulation of cholesterol metabolism in rat adrenal glands: effect of adrenocorticotropin, cholesterol, and corticosteroids on acyl-coenzyme A synthetase and cholesterol ester hydrolase. Endocrinology 114:136–140

    PubMed  CAS  Google Scholar 

  • Millar JA, Struthers AD, Beastall GH, Reid JL (1982) Effect of nifedipine on blood pressure and adrenocortical responses to trophic stimuli in humans. J Cardiovasc Pharmacol 4[Suppl 3]:S330–S334

    PubMed  Google Scholar 

  • Mizuno Y, Yoshimura M, Yasue H, Sakamoto T, Ogawa H, Kugiyama K, Harada E, Nakayama M, Nakamura S, Ito T, Shimasaki Y, Saito Y, Nakao K (2001) Aldosterone production is activated in failing ventricle in humans. Circulation 103:72–77

    PubMed  CAS  Google Scholar 

  • Moritz KM, Boon WC, Wintour EM (1999) Aldosterone secretion by the mid-gestation ovine fetus: role of the AT2receptor. Mol Cell Endocrino 157:153–160

    CAS  Google Scholar 

  • Morohashi K, Zanger UM, Honda S, Hara M, Waterman MR, Omura T (1993) Activation of CYPllA and CYPIIB gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol Endocrino 7:1196–1204

    CAS  Google Scholar 

  • Möller J (1988) Regulation of aldosterone biosynthesis. Monographs on endocrinology. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Möller J, Lauber M, Schmid C (1989) Potassium-induced aldosterone biosynthesis in cultured rat zona glomerulosa cells. Am J Physiol 256:E475–E482

    Google Scholar 

  • Mulrow PJ (1988) Production of renin by adrenal glomerulosa cells. Trans Am Clin Climatol Assoc 100:126–131

    Google Scholar 

  • Mulrow PJ (1999) Angiotensin II and aldosterone regulation. Regul Pept 80:27–32

    PubMed  CAS  Google Scholar 

  • Mulrow PJ, Kusano E, Baba K, Shier D, Doi Y, Franco-Saenz R, Stoner G, Rapp J (1988) Adrenal renin: a possible local hormonal regulator of aldosterone production. Cardiovasc Drugs Ther 2:463–471

    PubMed  CAS  Google Scholar 

  • Nackley AC, Shea-Eaton W, Lopez D, Mclean MP (2002) Repression of the steroidogenic acute regulatory gene by the multifunctional transcription factor Yin Yang I. Endocrinology 143:1085–1096

    PubMed  CAS  Google Scholar 

  • Nadler JL, Natarajan R, Stern N (1987) Specific action of the lipoxygenase pathway in mediating angiotensin II-induced aldosterone synthesis in isolated adrenal glomerulosa cells. J Clin Invest 80:1763–1769

    PubMed  CAS  Google Scholar 

  • Nagy K, Koroknai L, Spat A (1984) Effect of lipoprotcins on aldosterone production by isolated glomerulosa cells. J Steroid Biochem 20:789–791

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Catt Kj, Balla T (1994) Inhibition of agonist-stimulated inositol 1,4,5trisphosphate production and calcium signaling by the myosin light chain kinase inhibitor, wortmannin. j Biol Chem 269:6528–6535

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Catt KJ, Balla T (I995) A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci USA 92:5317–5321

    Google Scholar 

  • Nakano S, Carvallo P, Rocco S, Aguilera G (1990) Role of protein kinase C on the steroidogenic effect of angiotensin II in the rat adrenal glomerulosa cell. Endocrinology 126:125–133

    PubMed  CAS  Google Scholar 

  • Natarajan R, Stern N, Hsueh W, Do Y, Nadler I (1988a) Role of the lipoxygenase pathway in angiotensin II-mediated aldosterone biosynthesis in human adrenal glomerulosa cells. J Clin Endocrinol Metab 67:584–591

    CAS  Google Scholar 

  • Natarajan R, Stern N, Nadler J (1988b) Diacylglycerol provides arachidonic acid for lipoxygenase products that mediate angiotensin II-induced aldosterone synthesis. Biochem Biophys Res Commun 156:717–724

    CAS  Google Scholar 

  • Natarajan R, Dunn WD, Stern N, Nadler J (1990) Key role of diacylglycerol-mediated 12-lipoxygenase product formation in angiotensin II-induced aldosterone synthesis. Mol Cell Endocrinol 72:73–80

    PubMed  CAS  Google Scholar 

  • Natarajan R, Gonzales N, Hornsby PJ, Nadler J (1992) Mechanism of angiotensin II-induced proliferation in bovine adrenocortical cells. Endocrinology 131:1174–1180

    PubMed  CAS  Google Scholar 

  • Natarajan R, Lanting L, Xu L, Nadler J (1994) Role of specific isoforms of protein kinase C in angiotensin II and lipoxygenase action in rat adrenal glomerulosa cells. Mol Cell Endocrinol 101:59–66

    Google Scholar 

  • Natarajan R, Kathuria S, Lanting L, Gonzales N, Nadler JL (1995) Differential short-and long-term effects of insulin on Ang II action in human adrenal glomerulosa cells. Am J Physio 268:EI00–E106

    Google Scholar 

  • Nishikawa T, Mikami K, Saito Y, Tamura Y, Kumagai A (1981) Studies on cholesterol esterase in the rat adrenal. Endocrinology 108:932–936

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Mikami K, Saito Y, Tamura K, Yoshida S (1988) Functional differences in cholesterol ester hydrolase and acyl-coenzyme-A/cholesterol acyltransferase between the outer and inner zones of the guinea pig adrenal cortex. Endocrinology 122:877883

    Google Scholar 

  • Nishizuka Y (1984) Turnover of inositol phospholipids and signal transduction. Science 225:1365–1370

    PubMed  CAS  Google Scholar 

  • Nussdorfer GG, Rossi GP, Malendowicz LK, Mazzocchi G (1999) Autocrine-paracrine endothelin system in the physiology and pathology of steroid-secreting tissues (review). Pharmacol Rev 51:403–437

    PubMed  CAS  Google Scholar 

  • Oda H, Lotshaw DP, Franco-Saenz R, Mulrow PJ (1991) Local generation of angiotensin II as a mechanism of aldosterone secretion in rat adrenal capsules. Proc Soc Exp Biol Med 196:175–177

    PubMed  CAS  Google Scholar 

  • Osman H, Murigande C, Nadakal A, Capponi AM (2002) Repression ofDAX-l and induction of SF-l expression: two mechanisms contributing to the activation of aldosterone biosynthesis in adrenal glomerulosa cells. J Biol Chem 277:41259–41267

    PubMed  CAS  Google Scholar 

  • Page IH, Helmer OM (1940) A crystalline pressor substance (angiotonin) resulting from the reaction between renin and renin-activator. J Exp Med 71:29–42

    PubMed  CAS  Google Scholar 

  • Parker KL, Schimmer BP (1997) Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18:361–377

    PubMed  CAS  Google Scholar 

  • Passier RC, Smits JF, Verluyten MJ, Daemen MJ (1996) Expression and localization of renin and angiotensinogen in rat heart after myocardial infarction. Am J Physiol 271:HI040–HI048

    Google Scholar 

  • Payet MD, Durroux T, Bilodeau L, Guillon G, Gallo-Payet N (1994) Characterization of potassium and calcium ionic currents in glomerulosa cells from human adrenal glands. Endocrinology 134:2589–2598

    PubMed  CAS  Google Scholar 

  • Payet MD, Bilodeau L, Drolet P, Ibarrondo J, Guillon G, Gallo-Payet N (1995) Modulation of a calcium-activated potassium channel by angiotensin II in rat adrenal glomerulosa cells: involvement of a G protein. Mol Endocrinol 9:935–947

    PubMed  CAS  Google Scholar 

  • Pedersen RC, Brownie AC (1983) Cholesterol side-chain cleavage in the rat adrenal cortex: isolation of a cycloheximide-sensitive activator peptide. Proc Natl Acad Sci USA 80:1882–1886

    PubMed  CAS  Google Scholar 

  • Peterson JK, Moran F, Conley AJ, Bird IM (2001) Zonal expression of endothelial nitric oxide synthase in sheep and rhesus adrenal cortex. Endocrinology 142:5351–5363

    PubMed  CAS  Google Scholar 

  • Petrasek D, Jensen G, Tuck M, Stern N (1992) In vitro effects of insulin on aldosterone production in rat zona glomerulosa cells. Life Sci 50:1781–1787

    PubMed  CAS  Google Scholar 

  • Petrescu AD, Gallegos AM, Okamura Y, Strauss JF III, Schroeder F (2001) Steroidogenic acute regulatory protein binds cholesterol and modulates mitochondrial membrane sterol doma in dynamic s. J Biol Chem 276:36970–36982

    PubMed  CAS  Google Scholar 

  • Pezzi V, Clark BJ, Ando S, Stocco DM, Rainey WE (1996) Role of calmodulin-dependent prot ein kinase II in the acute stimulation of aldosterone production. J Steroid Bioehem Mol Bioi 58:417–424

    CAS  Google Scholar 

  • Pezzi V, Clyne CD, Ando S, Mathis JM, Rainey WE (1997) Calcium-regulated expression of aldosterone synthase is mediated by calmodulin and calmodulin-dependent protein kinases. Endocrinology 138:835–838

    PubMed  CAS  Google Scholar 

  • Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Paliensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341:709–717

    PubMed  CAS  Google Scholar 

  • Plump AS, Erickson SK, Weng W, Partin JS, Breslow JL, Williams DL (1996) Apolipoprotein A-I is requ ired for cholesteryl ester accumulation in steroidogenic cells and for normal adrenal steroid production. J Clin Invest 97:2660–2671

    PubMed  CAS  Google Scholar 

  • Poirier SN, Poitras M, Chorvatova A, Payet MD, Guillemette G (2001) FK506 blocks intracellular Ca2+ oscillations in bovine adrenal glomerulosa cells. Biochemistry 40:6486–6492

    PubMed  CAS  Google Scholar 

  • Poitras M, Bernier S, Servant M, Richard DE, Boulay G, Guillemette G (1993) The high affinity state of inositol 1,4,5-trisphosphate receptor is a functional state. J Biol Chem 268:24078–24082

    PubMed  CAS  Google Scholar 

  • Poitras M, Poirier SN, Laflamme K, Simoneau M, Escher E, Guillemette G (2000) Different populations of inositol 1,4,5-trispho sphate receptors expressed in the bovine adrenal cortex. Receptors Channels 7:41–52

    PubMed  CAS  Google Scholar 

  • Pralong WF, Spat A, Wollheim CB (1994) Dynamic pacing of cell metabolism by intracellular Ca2+ transients. J Biol Chem 269:27310–27314

    PubMed  CAS  Google Scholar 

  • Puglielli L, Rigotti A, Greco AV, Santos MJ, Nervi F (1995) Sterol carrier protein-2 is involved in cholesterol transfer from the endoplasmic reticulum to the plasma membrane in human fibrobl asts. J Biol Chem 270:18723–18726

    PubMed  CAS  Google Scholar 

  • Putney JW Jr (1999) “Kissin’ cousins”: intimate plasma membrane-endoplasmic reticulum interaction s underlie capacitative calcium entry. Cell 99:5–8

    PubMed  CAS  Google Scholar 

  • Putney JW Jr, McKay RR (1999) Capacitative calcium entry channels. Bioessays 21:38–46

    PubMed  Google Scholar 

  • Python CP, Rossier MF, Vallotton MB, Capponi AM (1993) Peripheral-type benzodiazepin es inhibit calcium channels and aldosterone production in adrenal glomerulosa cells. Endocrinology 132:1489–1496

    PubMed  CAS  Google Scholar 

  • Python CP, Laban OP, Rossier MF, Vallotton MB, Capponi AM (1995) The site of action of calcium in the activation of steroidogenesis: studies in calcium-clamped bovine adrenal zona glomerulosa cells. Biochem J 305:569–576

    PubMed  CAS  Google Scholar 

  • Quinn SJ, Cornwall MC, Williams GH (1987) Electrophysiological responses to angiotensin H of isolated rat adrenal glomerulosa cells. Endocrinology 120:1581–1589

    PubMed  CAS  Google Scholar 

  • Quinn SJ, Williams GH, Tillotson DL (1988) Calcium oscillations in single adrenal glomerulosa cells stimulated by angiotensin H. Proc Nat Acad Sci USA 85:5754–5758

    PubMed  CAS  Google Scholar 

  • Rainey WE (1999) Adrenal zonation: clues from 11 bet a-hydroxylase and aldo sterone synthase. Mol Cell Endocrinol 151:151–160

    PubMed  CAS  Google Scholar 

  • Rainey WE, Rodgers RJ, Mason JI (1992) The role of bovine lipoproteins in the regulation of steroidogenesis and HMG-CoA reductase in bovine adrenocortical cells. Steroids 57:167–173

    PubMed  CAS  Google Scholar 

  • Rasmussen H, Isales CM, Calle R, Throckmorton D, Anderson M, Gasalla-Herraiz J, McCarthy RT (1995) Diacylglycerol production, calcium influx, and protein kinase C activation in sustained cellular responses. Endocrine Rev 16:649–681

    CAS  Google Scholar 

  • Reaven E, Tsai L, Azhar S (1996) Intracellular events in the “selective” transport of lipoprotein-derived cholesterylesters. J BioL Chem 271:16208–16217

    PubMed  CAS  Google Scholar 

  • Reinhart AJ, Williams SC, Clark BJ, Stocco DM (1999a) SF-l (steroidogenic factor-I) and C/EBP beta (CCAAT/enhancer binding protein-beta) cooperate to regulate the murine StAR (steroidogenic acute regulatory) promoter. Mol Endocrinol 13:729–741

    CAS  Google Scholar 

  • Reinhart AJ, Williams SC, Stocco DM (1999b) Transcriptional regulation of the StAR gene. Mol Cell Endocrinol 51:161–169

    Google Scholar 

  • Reyland ME, Evans RM, White EK (2000) Lipoproteins regulate expres sion of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells. J Biol Chem 275:36637–36644

    PubMed  CAS  Google Scholar 

  • Ribeiro-do-Valle RM, Poitras M, Boulay G, Guillemette G (1994) The important discrepancy between the apparent affinity observed in Ca2+ mobilization studies and the Kd measured in binding studies is a consequence of the quantal process by which inositol 1,4,5-trisphosphate releases Ca2+ from bovine adrenal cortex microsomes. Cell Calcium 15:79–88

    PubMed  CAS  Google Scholar 

  • Richard DE, Chretien L, Caron M, Guillemette G (1997a) Stimulation of the angiotensin II type I receptor on bovine adrenal glomerulosa cells activates a temperature-sensitive internalization-recycling pathway. Mol Cell Endocrino 129:209–218

    CAS  Google Scholar 

  • Richard DE, Laporte SA, Bernier SG, Leduc R, Guillemette G (1997b) Desensitization of ATl receptor-mediated cellular responses requires long term receptor down-regulation in bovine adrenal glomerulosa cells. Endocrinology 138:3828–3835

    CAS  Google Scholar 

  • Rigotti A, Edelmann ER, Seifert P, Iqbal SN, Demattos RB,Temel RE, Krieger M, Williams DL (1996) Regulation by adrenocorticotropic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland. J Biol Chem 271:33545–33549

    PubMed  CAS  Google Scholar 

  • Rigotti A, Trigatti B, Babitt J, Penman M, Xu S, Krieger M (1997) Scavenger receptor BI-a cell surface receptor for high density lipoprotein. Curr Opin Lipido 8:181–188

    CAS  Google Scholar 

  • Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high calcium close to inositol trisphosphate-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    PubMed  CAS  Google Scholar 

  • Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C (1999) Angiotensin ATl receptor subtype as a cardiac target of aldosterone: role in aldosterone-saltinduced fibrosis. Hypertension 33:981–986

    PubMed  CAS  Google Scholar 

  • Rocha R, Stier CT Jr, Kifor I, Ochoa-Maya MR, Rennke HG, Williams GH, Adler GK (2000) Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 141:3871–3878

    PubMed  CAS  Google Scholar 

  • Rocha R, Martin-Berger CL, Yang P, Scherrer R, Delyani J, McMahon E (2002a) Selective aldosterone blockade prevents angiotensin ii/salt-induced vascular inflammation in the rat heart. Endocrinology 143:4828–4836

    CAS  Google Scholar 

  • Rocha R, Rudolph AE, Frierdich GE, Nachowiak DA, Kekec BK, Blomme EA, McMahon EG, Delyani JA (2002b) Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 283:HI802–HI810

    Google Scholar 

  • Rodrigueza WV, Thuahnai ST, Temel RE, Lund-Katz S, Phillips MC, Williams DL (1999) Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J Biol Chem 274:20344–20350

    PubMed  CAS  Google Scholar 

  • Rohacs T, Bago A, Deak F, Hunyady L, Spat A (1994) Capacitat ive calcium influx in adrenal glomerulosa cells: possible role in angiotensin II response. Am J Physiol 267:CI246–CI252

    Google Scholar 

  • Rohacs T, Nagy G, Spat A (1997a) Cytoplasmic calcium signaling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to potassium, angiotensin II and vasopressin. Biochem J 322:785–792

    CAS  Google Scholar 

  • Rohacs T, Tory K, Dobos A, Spat A (1997b) Intracellular calcium release is more efficient than calcium influx in stimulating mitochondrial NAD(P)H formation in adrenal glomerulosa cells. Biochem J 328:525–528

    CAS  Google Scholar 

  • Romanowski MJ, Soccio RE, Breslow JL, Burley SK (2002) Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc Natl Acad Sci US 99:6949–6954

    CAS  Google Scholar 

  • Rossier MF (1997) Confinement of intracellular calcium signaling in secretory and steroidogenic cells. Eur J Endocrinol 137:317–325

    PubMed  CAS  Google Scholar 

  • Rossier MF, Capponi AM (2000a) Angiotensin II and calcium channels. Vitam Horm 60:229–284

    CAS  Google Scholar 

  • Rossier MF Capponi AM 2000b Antagonistes calciques et inhibition de la secretion d’aldosterone. M’tab Horm Nutr IV:101-106

    Google Scholar 

  • Rossier MF Capponi AM 2002 Cytosolic calcium oscillations in signal transduction pathways. Mini Rev Med Chem 2:353–3

    PubMed  CAS  Google Scholar 

  • Rossier MF, Dentand JA, Lew PD, Capponi AM, Vallotton MB (1986) Interconversion of inositol 1,4,5-trisphosphate to inositol 1,3, 4,5-tetrakisphosphate and 1,3,4-trisphosphate in permeabilized adrenal glomerulosa cells is calcium-sensitive and ATP-dependent. Biochem Biophys Res Commun 139:259–265

    PubMed  CAS  Google Scholar 

  • Rossier MF, Krause K-H, Lew PD, Capponi AM, Vallotton MB (1987) Control of cytosolic free calcium by intracellular organelles in bovine adrenal glomerulosa cells: effects of sodium and inositol 1,4,5-trisphosphate. J Biol Chem 262:4053–4058

    PubMed  CAS  Google Scholar 

  • Rossier MF, Capponi AM, Vallotton MB (1988) Inositol trisphosphate isomers in angio ten sin II-stimulated adrenal glomerulosa cells. Mol Cell Endocrino 57:163–168

    CAS  Google Scholar 

  • Rossier MF, Capponi AM, Vallotton MB (1989) The inositol 1,4,5-trisphosphate-binding site in adrenal cortical cells is distinct from the endoplasmic reticulum. J Biol Chem 264:14078–14084

    PubMed  CAS  Google Scholar 

  • Rossier MF, Putney IW Jr (1991) The identity of the calcium-storing, inositol 1,4,5trisphosphate-sensitive organelle in non-muscle cells: calciosomes, endoplasmic reticulum... or both? Trend s Neurosci 14:310–314

    CAS  Google Scholar 

  • Rossier MF, Python CP, Capponi AM, Schlegel W, Kwan CY, Vallotton MB (1993) Blocking T-type calcium channels with tetrandrine inh ibits steroidogenesis in bovine adrenal glomerulosa cells. Endocrinology 132:1035–1043

    PubMed  CAS  Google Scholar 

  • Rossier MF, Aptel HBC, Python CP, Burnay MM, Vallotton MB, Capponi AM (1995) Inhibition of low threshold calcium channels by angiotensin II in adrenal glomerulosa cells through activation of protein kinase C. J Biol Chem 270:15137–15142

    PubMed  CAS  Google Scholar 

  • Rossier MF, Burnay MM, Brandenburger Y, Cherradi N, Vallotton MB, Capponi AM (l996a) Sources and sites of action of calcium in the regulation of aldosterone biosynthesis. Endocrine Res 22:579–588

    Google Scholar 

  • Rossier MF, Burnay MM, Vallotton MB, Capponi AM (l996b) Distinct functions ofT-type and L-type calcium channels du ring activation of bovine adrenal glomerulosa cells. Endocrinology 137:4817–4826

    Google Scholar 

  • Rossier MF, Burnay MM, Maturana AD, Capponi AM (l998a) Dualit y of the voltage-dependent calcium influx in adrenal glomerulosa cells. Endocrine Res 24:443–447

    Google Scholar 

  • Rossier MF, Ertel EA, Vallotton MB, Capponi AM (1998b) Inh ibitory action of mibefradil on calcium signaling and aldosterone synthesis in bovine adrenal glomerulosa cells. I Pharmacol Exp Ther 287:824–831

    CAS  Google Scholar 

  • Rössig L, Zoyomi A, Catt KI, Balla T (1996) Regulation of angiotensin Il-stimulated calcium oscillations by calcium influx mechanisms in adrenal glomerulosa cells. J Biol Chem 271:22063–22069

    PubMed  Google Scholar 

  • Russell DW, Yamamoto T, Schneider WJ, Slaughtercr, Brown MS, Goldstein IL (1983) cDNA cloning of the bovine low density lipoprotein receptor: feedback regulation of a receptor mRNA. Proc Natl Acad Sci USA 80:7501–7505

    PubMed  CAS  Google Scholar 

  • Rust W, Stedronsky K, Tillmann G, Morley S, Walther N, Ivell R (1998) The role of SF-I1 Ad4BP in the control of the bovine gene for the steroidogenic acute regulatory (StAR) protein. J Molecular Endocrino 21:189–200

    CAS  Google Scholar 

  • Sachse R, Shao XJ, Rico A, Finckh U, Rolfs A, Reincke M, Hensen J (1997) Absence of angiotensin II type 1 receptor gene mutations in human adrenal tumors. Eur I Endocrinol 137:262–266

    CAS  Google Scholar 

  • Sadoshima I, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    PubMed  CAS  Google Scholar 

  • Sandhoff TW, Hales DB, Hales KH, Mclean MP (1998) Transcriptional regulation of the rat steroidogenic acute regulatory protein gene by steroidogenic factor 1. Endocrinology 139:4820–4831

    PubMed  CAS  Google Scholar 

  • Schiebinger RJ, Braley LM, Menachery A, Williams GH (1986) Unique calcium dependencies of the activating mechanism of the early and late aldosterone biosynthetic pathways in the rat. I Endocrinol 110:315–325

    CAS  Google Scholar 

  • Schiffrin EL, Gutkowska J, Lis M, Genest J (1982) Relative roles of sodium and calcium ions in the steroidogenic response of isolated rate adrenal glomerulosa cells. Hypertension 4:36–42

    PubMed  CAS  Google Scholar 

  • Schrier AD, Wang H, Talley EM, Perez-Reyes E, Barrett PQ (2001) The alpha1 HT-type calcium channel is the predominant subtype expressed in bovine and rat zona glomerulosa. Am J Physiol 280:C265–C272

    CAS  Google Scholar 

  • Schulz G, Rosenthal W, Hescheler J, Trautwein W (1990) Role of G proteins in calcium channel modulation. Annu Rev Physiol 52:275–292

    Google Scholar 

  • Scriabine A, Anderson CL, Janis RA, Kojima K, Rasmussen H, Lee S, Michal U (1984) Some recent pharmacological findings with nitrendipine. J Cardiovasc Pharmacol 6 [SuppI7]:S937–S943

    Google Scholar 

  • Servetnick DA, Brasaemle DL, Gruia-Gray J, Kimmel AR, Wolff J, Londos C (1995) Perilipins are associated with cholesteryl ester droplets in steroidogenic adrenal cortical and Leydig cells. J Biol Chem 270:16970–16973

    PubMed  CAS  Google Scholar 

  • Shah JR, Laredo J, Hamilton BP, Hamlyn JM (1998) Different signaling pathways mediate stimulated secretions of endogenous ouabain and aldosterone from bovine adrenocortical cells. Hypertension 31:463–468

    PubMed  CAS  Google Scholar 

  • Shea-Eaton WK, Trinidad MJ, Lopez D, Nackley A, Mclean MP (2001) Sterol regulatory element binding protein-la regulation of the steroidogenic acute regulatory protein gene. Endocrinology 142:1525–1533

    PubMed  CAS  Google Scholar 

  • Shea-Eaton W, Sandhoff TW, Lopez D, Hales DB, Mclean MP (2002) Transcriptional repression of the rat steroidogenic acute regulatory (StAR) protein gene by the AP-1 family member c-Fos. Mol Cell Endocrino 188:161–170

    CAS  Google Scholar 

  • Shepherd RM, Fraser R, Kenyon CJ (1992) Membrane permeability to potassium and the control of aldosterone synthesis: effects of valinomycin and cromakalim in bovine adrenocortical cells. J Mol Endocrinol 9:165–173

    PubMed  CAS  Google Scholar 

  • Shibata H, Ogishima T, Mitani F, Suzuki H, Murakami M, Saruta T, Ishimura Y (1991) Regulation of aldosterone synthase cytochrome P-450 in rat adrenals by angiotensin II and potassium. Endocrinology 128:2534–2539

    PubMed  CAS  Google Scholar 

  • Silverman E, Eimeri S, Oriy J (1999) CCAAT enhancer-binding protein beta and GATA-4 binding regions within the promoter of the steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. J Biol Chem 274:17987–17996

    PubMed  CAS  Google Scholar 

  • Silvestre JS, Robert V, Heymes C, Aupetit-Faisant B, Mouas C, Moalic JM, Swynghedauw B, Delcayre C (1998) Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J Biol Chem 273:4883–4891

    PubMed  CAS  Google Scholar 

  • Silvestre JS, Heymes C, Oubenaissa A, Robert V, Aupetit-Faisant B, Carayon A, Swynghedauw B, Delcayre C (1999a) Activation of card iac aldosterone production in rat myocard ial infarction: effect of angiotensin II blockade and role in cardiac fibrosis. Circulation 99:2694–2701

    CAS  Google Scholar 

  • Silvestre JS, Robert V, Delcayre C (1999b) The cardiac endocrine aldosterone system. Curr Opin Endocrinol Diabetes 6:204–209

    CAS  Google Scholar 

  • Simpson HD, Shepherd R, Shepherd J, Fraser R, Lever AF, Kenyon CJ (1989) Effects of cholesterol and lipoproteins on aldosterone secretion by bovine zona glomerulosa cells. J Endocrinol 121:125–131

    PubMed  CAS  Google Scholar 

  • Simpson SA, Tait JF, Wettstein A, Neher R, von Euw J, Schindler 0, Reichstein T (1954) Konstitution des Aldosterons, des neuen Mieralocorticoids. Experientia 10:132–133

    PubMed  CAS  Google Scholar 

  • Sirianni R, Sirianni R, Carr BR, Pezzi V, Rainey WE (2001) A role for src tyros ine kinase in regulating adrenal aldosterone production. J Mol Endocrino 26:207–215

    CAS  Google Scholar 

  • Sirianni R, Seely JB, Attia G, Stocco DM, Carr BR, Pezzi V, Rainey WE (2002) Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encod ing steroidogenic enzymes. J Endocrinol 174:R13–R17

    PubMed  CAS  Google Scholar 

  • Smith RD, Timmermans PB (1994) Human angiotensin receptor subtypes. Curr Opin Nephrol Hypertens 3:112–122

    PubMed  CAS  Google Scholar 

  • Smith RD, Baukal AI, Dent P, Catt KJ (1999) Raf-l kina se activation by angiotensin II in adrenal glomerulosa cells: roles of Gi, phosphatidylinositol 3-kinase, and Ca2+ influx. Endocrinology 140:1385–1391

    PubMed  CAS  Google Scholar 

  • Soccio RE, Adams RM, Romanowski MJ, Sehayek E, Burley SK, Breslow JL (2002) The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci VSA 99:6943–6948

    CAS  Google Scholar 

  • Song M, Shao H, Mujeeb A, James TL, Miller WL (2001) Molten-globule structure and membrane bind ing of the N-terminal protease-resistant domain (63-193) of the steroidogenic acute regulatory protein (StAR). Biochem J 356:151–158

    PubMed  CAS  Google Scholar 

  • Sonnenborn V, Eiteljorge G, Trzeciak WH, Kunau WH (1982) Identical catalytic subunit in both molecular form s of hormone-sensitive cholesterol esterase from bovine adrenal cortex. FEBS Letters 145:271–276

    PubMed  CAS  Google Scholar 

  • Souza SC, Muliro KV, Liscum L, Lien P, Yamamoto MT, Schaffer JE, Dallal GE, Wang X, Kraemer FB, Obin M, Greenberg AS (2002) Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system. J Biol Chem 277:8267–8272

    PubMed  CAS  Google Scholar 

  • Spat A (1988) Stimulus-secretion coupling in angiotensin-stimulated adrenal glomerulosa cells. J Steroid Biochem 29:443–453

    PubMed  CAS  Google Scholar 

  • Spat A, Balla I, Balla T, Cragoe EJ Jr, Hajnoczky G, Hunyady L (1989) Angiotensin II and potassium activate different calcium entry mechanisms in rat adrenal glomerulosa cells. J Endocrinol 122:361–370

    PubMed  CAS  Google Scholar 

  • Spat A, Enyedi P, Hajnoczky G, Hunyady L (1991) Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol 76:859–885

    PubMed  CAS  Google Scholar 

  • Spat A, Rohacs T, Horvath A, Szabadkai G, Enyedi P (1996) The role of voltage-dependent calcium channels in angioten sin-stimulated glomerulosa cells. Endocr Res 22:569576

    Google Scholar 

  • Startchik I, Morabito D, Lang V, Rossier MF (2002) Control of calcium homeostasis by angiotensin II in adrenal glomerulosa cells through act ivation of p38 MAPK. J Bioi Chem 277:24265–24 273

    CAS  Google Scholar 

  • Stern N, Yanagawa N, Saito F, Hori M, Natarajan R, Nadler J, Tuck M (1993) Potential role of 12 hydrox yeicosatetraen oic acid in Angiotensin II-induced calcium signal in rat glomerulosa cells. Endocrinology 133:843–847

    PubMed  CAS  Google Scholar 

  • Stocco DM (1997) The steroidogenic acute regulatory (StAR) protein two years later-an update. Endocrine 6:99–109

    PubMed  CAS  Google Scholar 

  • Stocco DM (2001) StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63:193–213

    PubMed  CAS  Google Scholar 

  • Stocco DM, Clark BJ (1996a) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17:221–244

    CAS  Google Scholar 

  • Stocco DM, Clark BJ (l996b) Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis. Biochem Pharmacol 51:197–205

    Google Scholar 

  • Stralfors P, Belfrage P (1983) Phosphorylation of hormone-sensitive lipase by cyclic AMP-dependent protein kinase. J Biol Chem 258:15146–15152

    PubMed  CAS  Google Scholar 

  • Sugawara T, Holt JA, Kiriakidou M, Strauss JF (1996) Steroidogenic factor l-dependent promoter activity of the hum an steroidogenic acute regulatory protein (StAR) gene. Biochemistry 35:9052–9059

    PubMed  CAS  Google Scholar 

  • Sugawara T, Kiriakidou M, Mcallister JM, Holt JA, Arakane F, Strauss JF (1997a) Regulation of expression of the steroidogenic acute regulatory protein (StAR) gene: a central role for steroidogenic factor I. Steroids 62:5–9

    CAS  Google Scholar 

  • Sugawara T, Kiriakidou M, Mcallister JM, Kallen CB, Strauss JF (1997b) Multiple steroidogenic factor 1 binding elements in the human steroidogenic acute regulatory protein gene 5’-flanking region are requ ired for maximal promoter activity and cyclic AMP responsiveness. Biochemistry 36:7249–7255

    CAS  Google Scholar 

  • Sun Y, Wang N, Tall AR (1999) Regulation of adrenal scavenger receptor-Bl expression by ACTHand cellular cholesterol pools. J Lipid Res 40:1799–1805

    PubMed  CAS  Google Scholar 

  • Sun Y, Zhang J, Zhang JQ, Weber KT (2001) Renin expression at sites of repair in the infarcted rat heart. J Mol Cell Cardio 33:995–1003

    CAS  Google Scholar 

  • Takagi M, Franco-Saenz R, Shier D, Mulrow PJ (1988) Effect of atrial natriuretic factor on calcium fluxes in adrenal glomerulosa cells. Hypertension 11:433–439

    PubMed  CAS  Google Scholar 

  • Takeda Y, Miyamori I, Yoneda T, Hatakeyama H, Inaba S, Furukawa K, Mabuchi H, Takeda R (1996) Regulation of aldosterone synthase in human vascular endothelial cells by Angiotensin IIand adrenocorticotropin. J Clin Endocrinol Metab 81:2797–2800

    PubMed  CAS  Google Scholar 

  • Takeda Y, Yoneda T, Demura M, Miyamori I, Mabuchi H (2000a) Cardiac aldosterone production in genetically hypertensive rats. Hypertension 36:495–500

    CAS  Google Scholar 

  • Takeda Y, Yoneda T, Demura M, Miyamori I, Mabuchi H (2000b) Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy. Endocrinology 141:1901–1904

    CAS  Google Scholar 

  • Tamai KT, Monaco L, Alastalo TP, Lalli E, Parvinen M, Sassone-Corsi P (1996) Hormonal and developmental regulation of DAX-l expression in sertoli cells. Mol Endocrinol 10:1561–1569

    PubMed  CAS  Google Scholar 

  • Tanabe A, Naruse M, Arai K, Naruse K, Yoshimoto T, Seki T, Imaki T, Kobayashi M, Miyazaki H, Demura H (1998) Angiotensin II stimulates both aldosterone secretion and DNAsynthesis via type 1 but not type 2 receptors in bovine adrenocortical cells. J Endocrinol Invest 21:668–672

    PubMed  CAS  Google Scholar 

  • Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova 0, Reitman ML, Deng CX, Li C, Kimmel AR, Londos C (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci US 98:6494–6499

    CAS  Google Scholar 

  • Temel RE, Trigatti B, Demattos RB, Azhar S, Krieger M, Williams DL (1997) Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci US 94:13600–13605

    CAS  Google Scholar 

  • Tian Y, Smith RD, Balla T, Catt KJ (1998) Angiotensin II activates mitogen-activated protein kinase via protein kinase C and Ras/Raf-1 kinase in bovine adrenal glomerulosa cells. Endocrinology 139:1801–1809

    PubMed  CAS  Google Scholar 

  • Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) Angiotensin II receptors and Angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    PubMed  CAS  Google Scholar 

  • Toth IE, Szabo D, Bruckner GG (1997) Lipoproteins, lipid droplets, Iysosomes, and adre nocortical steroid hormone synthesis: morphological studies. Microsc Res Tech 36:480–492

    PubMed  CAS  Google Scholar 

  • Trautwein W, Hescheler J (1990) Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu Rev Physiol 52:257–274

    PubMed  CAS  Google Scholar 

  • Tremblay A, Parker KL, LeHoux JG (1992) Dietary potassium supplementation and sodium restriction stimulate aldosterone synthase but not 11 beta-hydroxylase P-450 messenger ribonucleic acid accumulation in rat adrenals and require Angiotensin II production. Endocrinology 130:3152–3158

    PubMed  CAS  Google Scholar 

  • Tremblay J, Gerzer R, Pang SC, Cantin M, Genest J, Hamet P (1986) ANF stimulation of detergent-dispersed particulate guanylate cyclase from bovine adrenal cortex. FEBS Lett 194:210–214

    PubMed  CAS  Google Scholar 

  • Tremblay JJ, Hamel F, Viger RS (2002) Protein kinase A-dependent cooperation between GATA and CCAAT/enhancer-binding protein transcription factors regulates steroidogenic acute regulatory protein promoter activity. Endocrinology 143:3935–3945

    PubMed  CAS  Google Scholar 

  • Tsujishita Y, Hurley JH (2000) Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol 7:408–414

    PubMed  CAS  Google Scholar 

  • Vahouny GV, Chanderbhan R, Noland BJ, Scallen TJ (1984) Cholesterol ester hydrolase and sterol carrier proteins. Endocr Rese 10:473–505

    CAS  Google Scholar 

  • Vallotton MB, Rossier MF, Capponi AM (1995) Potassium-angiotensin interplay in the regulation of aldosterone biosynthesis. Clin Endocrinol 42:111–119

    CAS  Google Scholar 

  • Vassilev PM, Kanazirska MV, Quinn SJ, Tillotson DL, Williams GH (1992) Potassium channels in adrenal zona glomerulosa cells: I. Characterization of dist inct channel types. Am J Physiol 263:E752–E759

    PubMed  CAS  Google Scholar 

  • Vinson GP, Laird SM, Whitehouse BJ, Hinson JP (1989) Specific effects of agonists of the calcium messenger system on secretion of “late-pathway” steroid products by intact tissue and dispersed cells of the rat adrenal zona glomerulosa. J Mol Endocrinol 2:157–165

    PubMed  CAS  Google Scholar 

  • Vinson GP, Hinson JP, Toth JE (1994a) The neuroendocrinology of the adrenal cortex. J Neuroendocrinol 6:235–246

    CAS  Google Scholar 

  • Vinson GP, Ho MM, Puddefoot JR, Teja R, Barker S (1994b) Internalisation of the type I angiotensin II receptor (AT1) and angiotensin II function in the rat adrenal zona glomerulosa cell. J Endocrinol 141:R5–R9

    CAS  Google Scholar 

  • Vinson GP, Ho MM, Puddefoot JR, Teja R, Barker S, Kapas S, Hinson JP (1995) Internalisation of the type I angiotensin II receptor (AT1) and angiotensin II function in the rat adrenal zona glomerulosa cell. Endocr Res 21:211–217

    PubMed  CAS  Google Scholar 

  • Vinson GP, Teja R, Ho MM, Hinson JP, Puddefoot JR (1996) Role of the tissue renin-angiotensin system in the response of the rat adrenal to exogenous angiotensin II. Endoer Res 22:589–593

    CAS  Google Scholar 

  • Wada T, Inada Y, Sanada T, Ojima M, Shibouta Y, Noda M, Nishikawa K (1994) Effect of an angiotensin II receptor antagonist, CV-1I974, and its prodrug, TCV-1I6, on production of aldost erone. Eur J Pharmaco 253:27–34

    CAS  Google Scholar 

  • Wang N, Weng W, Breslow JL, Tall AR (1996) Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control. J Biol Chem 271:21001–21004

    PubMed  CAS  Google Scholar 

  • Weir MR, Dzau VJ (1999) The renin-angiotensin-aldo sterone system: a specific target for hypertension management. Am J Hypertens 12:205S–213S

    PubMed  CAS  Google Scholar 

  • Weiss MJ, Orkin SH (1995) GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 23:99–107

    PubMed  CAS  Google Scholar 

  • West LA, Horvat RD, Roess DA, Barisas BG, Iuengel JL, Niswender GD (2001) Steroidogenic acute regulatory protein and peripheral-type benzodiazepine receptor associate at the mitochondrial membrane. Endocrinology 142:502–505

    PubMed  CAS  Google Scholar 

  • Whitley GS, Hyatt PJ, Tait JF (1987) Angiotensin II-induced inositol phosphate production in isolated rat zona glomerulosa and fasciculata/reticularis cells. Steroids 49:271–286

    PubMed  CAS  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a thre e-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  • Williams DL, Connelly MA, Temel RE, Swarnakar S, Phillips MC, de la Llera-Moya M, Rothblat GH (1999) Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol 10:329–339

    PubMed  CAS  Google Scholar 

  • Wilson JX, Aguilera G, Catt KJ (1984) Inhibitory actions of calmodulin antagonists on steroidogenesis in zona glomerulosa cells. Endocrinology 115:1357–1363

    PubMed  CAS  Google Scholar 

  • Wolfe JT, Wang H, Perez-Reyes E, Barrett PQ (2002) Stimulation of recombinant Ca(v)3.2, T-type, Ca(2+) channel currents by CaMKIIgamma(C). J Physiol 538:343–355

    PubMed  CAS  Google Scholar 

  • Woodcock EA (1989) Adrenocorticotropic hormone inhibits angiotensin Il-stimulated inositol phosphate accumulation in rat adrenal glomerulosa cells. Mol Cell Endocrino 63:247–253

    CAS  Google Scholar 

  • Woodcock EA, Johnston CJ (1984) Inhibition of adenylate cyclase in rat adrenal glomerulosa cells by angiotensin 11. Endocrinology 115:337–341

    PubMed  CAS  Google Scholar 

  • Woodcock EA, Smith AI, Schmauk-White LB (1988) Angiotensin II-stimulated phosphatidylinositol turnover in rat adrenal glomerulosa cells has a complex dependence on calcium. Endocrinology 122:1053–1059

    PubMed  CAS  Google Scholar 

  • Woodcock EA, Little PJ, Tanner JK (1990a) Inositol phosphate release and steroidogenesis in rat adrenal gIomerulosa cells. Comparison of the effects of endothelin, angiotensin II and vasopressin. Biochem J 271:791–796

    CAS  Google Scholar 

  • Woodcock EA, Tanner JK, Caroccia LM, Little PJ (1990b) Mechanisms involved in the stimulation of aldosterone production by angiotensin II, vasopressin and endothelin. Clin Exp Pharmacol Physiol 17:263–267

    CAS  Google Scholar 

  • Wooton-Kee CR, Clark BJ (2000) Steroidogenic factor-l influences protein-deoxyribonucleic acid interactions within the cyclic adenosine 3,5-monophosphate-responsive regions of the murine steroidogenic acute regulatory protein gene. Endocrinology 141:1345–1355

    PubMed  CAS  Google Scholar 

  • Yagci A, Muller J (1996) Induction of steroidogenic enzymes by potassium in cultured rat zona glomerulosa cells depends on calcium influx and intact protein synthesis. Endocrinology 137:433 I–4338

    Google Scholar 

  • Yamaguchi T, Naito Z, Stoner GD, Franco-Saenz R, Mulrow PJ (1990) Role of the adrenal renin-angiotensin system on adrenocorticotropic hormone-and potass ium-stimulated aldosterone production by rat adrenal glomerulosa cells in monolayer culture. Hypertension 16:635–641

    PubMed  CAS  Google Scholar 

  • Yamamoto N, Yasue H, Mizuno Y, Yoshimura M, Fujii H, Nakayama M, Harada E, Nakamura S, Ho T, Ogawa H (2002) Aldosterone is produced from ventricles in patients with essential hypertension. Hypertension 39:958–962

    PubMed  CAS  Google Scholar 

  • Yanase T, Hara T, Sakai Y, Takayanagi R, Nawata H (1996) Expression of sterol carrier protein 2 (SCP2) in human adrenocortical tissue. Eur J Endocrino 134:501–507

    CAS  Google Scholar 

  • Yon L, Chartrel N, Feuilloley M, Demarchis S, Fournier A, Derijk E, Pelletier G, Roubos E, Vaudry H (1994) Pituitary adenylate cyclase-activating polypeptide stimulates both adrenocortical cells and chromaffin cells in the frog adrenal gland. Endocrinology 135:2749–2758

    PubMed  CAS  Google Scholar 

  • Yoshimura M, Nakamura S, Ho T, Nakayama M, Harada E, Mizuno Y, Sakamoto T, Yamamuro M, Saito Y, Nakao K, Yasue H, Ogawa H (2002) Expression of aldosterone synthase gene in failing human heart: quantitative analysis using modified real-time polymerase chain reaction. J Clin Endocrinol Metab 87:3936–3940

    PubMed  CAS  Google Scholar 

  • Young MJ, Funder JW (2000) Aldosterone and the heart. Trends Endocrinol Metab 11:224–226

    PubMed  CAS  Google Scholar 

  • Young M, Fullerton M, Dilley R, Funder JW (1994) Mineralocorticoids, hypertension and cardiac fibrosis. J Clin Invest 93:2578–2583

    PubMed  CAS  Google Scholar 

  • Young M, Head G, Funder J (1995) Determinants of cardiac fibrosis in experimental hypermineralocorticoid states. Am J PhysioI 269:E657–E662

    CAS  Google Scholar 

  • Young MJ, Clyne CD, Cole TJ, Funder JW (2001) Cardiac steroidogenesis in the normal and failing heart. J Clin EndocrinoI Metab 86:5121–5126

    CAS  Google Scholar 

  • Yu RN, Achermann JC, Ho M, Jameson JL (1998) The role of DAX-l in reproduction. Trends Endocrinol Metab 5:169–175

    Google Scholar 

  • Zazopoulos E, Lalli E, Stocco D, Sassone-Corsi P (1997) DNAbinding and transcriptional repression by DAX-l blocks steroidogenesis. Nature 390:311–315

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capponi, A., Rossier, M. (2004). Angiotensin and Aldosterone Biosynthesis. In: Angiotensin Vol. II. Handbook of Experimental Pharmacology, vol 163 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18497-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18497-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40641-9

  • Online ISBN: 978-3-642-18497-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics