Skip to main content

Nicht-lineare Texturmaße basierend auf den Minkowski-Funktionalen in 3D: Vorhersage der Bruchlast trabekulärer Knochenpräparate durch Strukturanalyse hochauflösender MR-Aufnahmen

  • Conference paper
Bildverarbeitung für die Medizin 2004

Zusammenfassung

Die Topologie multi-dimensionaler, konvexer Objekte kann mit Hilfe der Minkowski-Funktionale (MF) eindeutig charakterisiert werden. Im 3-dimensionalen euklidischen Raum sind diese proportional dem Volumen, der Oberfläche, der mittleren integralen Krümmung und der Euler-Poincaré-Charakteristik. In unserer Arbeit wird mittels nicht-linearer Strukturmaße, die auf den MF in 3D basieren, aus hochauflösenden MRT-Bilddaten menschlicher spinaler und femoraler Knochenpräparate die mechanische Bruchfestigkeit (MCS) vorherbestimmt. Die prädiktive Wertigkeit der neuen Parameter in vitro wird der Wertigkeit der Knochenmineralsalzdichte (BMD), gemessen durch quantitative Computertomographie (QCT), sowie der Wertigkeit linearer Strukturmasse gegenüber gestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mc Broom R, Hayes W, Edwards W, et al.: Prediction of vertebral body compressive fracture using quantitative computed tomography, J Bone and Joint Surgery (65A): 1206–1214, 1985.

    Google Scholar 

  2. Cortet B, Marchandise X: Bone microarchitecture and mechanical resistance, Joint Bone Spine (68): 297–305, 2001.

    Article  Google Scholar 

  3. Mosekilde L, Mosekilde L, Danielson C: Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals, Bone (8): 79–85, 1987.

    Article  Google Scholar 

  4. Dalstra M, Huiskes A, Odgaard E: Mechanical and textural properties of pelvic trabecular bone, J Biomech (27): 375–389, 1993.

    Google Scholar 

  5. Vesterby A, Mosekilde L, Gundersen HJ, et al.: Biologically meaningful determinants of the in vitro strength of lumbar vertebrae, Bone (12): 219–224, 1991.

    Article  Google Scholar 

  6. Majumdar S, Newitt D, Jergas M: Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging, Bone (17): 417–430, 1995.

    Article  Google Scholar 

  7. Majumdar S, Genant H: A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis, Osteoporos Int (5): 79–92, 1995.

    Article  Google Scholar 

  8. Majumdar S, Genant H, Grampp S, et al.: Correlation of trabecular bone structure with age, bone mineral density and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging, J Bone Miner Res (12): 1–9, 1996.

    Google Scholar 

  9. Lin JC, Amling M, Newitt D, et al.: Heterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imaging, Osteoporosis Int (8): 16–24, 1998.

    Article  Google Scholar 

  10. Parfitt M, Drezner M, Glorieux F, et al.: Bone Histomorphometry: Standardization of nomenclature, symbols and units: Report of the ASBMR histomorphometry nomenclature committee, J Bone Miner Res(2): 595–610, 1987.

    Article  Google Scholar 

  11. Michielsen K, De Raedt H, Kawakatsu T: Integral-Geometry Morphological Image Analysis, Phys Rep(347): 461–538, 2001.

    Article  MathSciNet  Google Scholar 

  12. Waldt S, Meier N, Renger B, et al.: The texture-analysis of high-resolution computed tomograms as an additional procedure in osteoporosis diagnosis: in-vitro studies on vertebral segments, Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr (171): 136–142, 1999.

    Article  Google Scholar 

  13. Haidekker MA, Andresen R, Werner HJ: Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests, Osteoporos Int(9): 433–440, 1999.

    Article  Google Scholar 

  14. Uchiyama T, Tanizawa T, Muramatsu H, et al.: Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties, Bone (25): 487–491, 1999.

    Article  Google Scholar 

  15. Link TM, Majumdar S, Lin J, et al.: A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT, J Bone Miner Res (13): 122–132, 1998.

    Article  Google Scholar 

  16. Boehm HF, Raeth C, Monetti RA, et al.: Application of the standard Houghtransformation to high resolution MRI of human trabecular bone to predict mechanical strength, Proc of the SPIE: Medical Imaging: Image Processing: 470–479, 2003.

    Google Scholar 

  17. Boehm HF, Raeth C, Monetti RA, et al.: Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone, Invest Radiol(38): 269–280, 2003.

    Google Scholar 

  18. Monetti RA, Boehm HF, Mueller D, et al.: Scaling index method: a novel nonlinear technique for the analysis of high resolution MRI of human bones, Proc of the SPIE: Medical Imaging: Image Processing: 1777–1786, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boehm, H.F. et al. (2004). Nicht-lineare Texturmaße basierend auf den Minkowski-Funktionalen in 3D: Vorhersage der Bruchlast trabekulärer Knochenpräparate durch Strukturanalyse hochauflösender MR-Aufnahmen. In: Tolxdorff, T., Braun, J., Handels, H., Horsch, A., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2004. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18536-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18536-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21059-7

  • Online ISBN: 978-3-642-18536-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics