Skip to main content

Murine Bone Marrow Transplantation Models that Enable the Study of EPC Recruitment

  • Chapter
Methods in Endothelial Cell Biology

Part of the book series: Springer Lab Manuals ((SLM))

  • 717 Accesses

Abstract

It has recently been established that postnatal neovascularization is not restricted to angiogenesis, but also includes vasculogenesis (Asahara et al. 1997, Shi et al. 1998, Isner and Ashara 1999, Gunsilius et al. 2000). During adult vasculogenesis, bone marrow (BM)-derived endothelial progenitor cells (EPCs) are mobilized to the systemic circulation in response to certain cytokines or pharmacologic agents, and are recruited to ischemic tissue where they differentiate in situ. As there is currently no marker that can distinguish between BM-derived (vasculogenesis) versus resident endothelial lineage cells (angiogenesis), murine BM transplantation (BMT) models offer a powerful technique for studying the process of postnatal vasculogenesis. BM transplantation (BMT) models that enable one to distinguish BM-derived EPCs are designed for donor cells from either (1) transgenic mice in which the expression of marker gene is driven by endothelial-specific promoter (Asahara et al. 1999a, b, Takahashi et al. 1999, Llevadot et al. 2001, Murayama et al. 2002, Zhang et al. 2002), or (2) transgenic mice with a ubiquitously expressed marker gene or retroviral-infected wild-type BM, followed by endothelial staining (Crosby et al. 2000, Jackson et al. 2001, Lyden 2001 et al., Edelberg 2002 et al., Grant 2002 et al., Hess et al. 2002, Sata et al. 2002, Werner et al. 2002). Such models allow for:

  1. a)

    Identification of BM-derived EPCs in situ

  2. b)

    Quantification of BM-derived EPCs contribution in postnatal neovascularization

  3. c)

    Assessment of recruitment of BM-derived EPCs in response to various stimuli

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asahara T, Murohara T, Sullivan A, Silver M, Van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999a) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999b) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J 18:3964–3972

    Article  PubMed  CAS  Google Scholar 

  • Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297:1299

    Article  PubMed  CAS  Google Scholar 

  • Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87:728–730

    Article  PubMed  CAS  Google Scholar 

  • Down JD, Tarbell NJ, Thames HD, Mauch PM (1991) Syngeneic and allogeneic bone marrow engraftment after total body irradiation: dependence on dose, dose rate, and fractionation. Blood 77:661–669

    PubMed  CAS  Google Scholar 

  • Edelberg JM, Tang L, Hattori K, Lyden D, Rafii S (2002) Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ Res 90:E89–E93

    Article  PubMed  CAS  Google Scholar 

  • Engh E, Benestad HB, Strom-Gundersen I, Vaage JT, Bell EB, Rolstad B (1998) Role of classical (RT1.A) and nonclassical (RT1.C) MHC class I regions in natural killer cell-mediated bone marrow allograft rejection in rats. Transplantation 65:319–324

    Article  PubMed  CAS  Google Scholar 

  • Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8:607–612

    Article  PubMed  CAS  Google Scholar 

  • Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunewald K, Stockhammer G, Gabl C, Dirnhofer S, Clausen J, Gastl G (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355: 1688–1691

    Article  PubMed  CAS  Google Scholar 

  • Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J (2002) Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 33:1362–1368

    Article  PubMed  Google Scholar 

  • Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner JM, Asahara T (2001) HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 108:399–405

    PubMed  CAS  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Manfra DJ, Chen SC, Yang TY, Sullivan L, Wiekowski MT, Abbondanzo S, Vassileva G, Zalamea P, Cook DN, Lira SA (2001) Leukocytes expressing green fluorescent protein as novel reagents for adoptive cell transfer and bone marrow transplantation studies. Am J Pathol 158:41–47

    Article  PubMed  CAS  Google Scholar 

  • Mohiuddin MM, Ildstad ST, DiSesa VJ (2000) Establishment of fully xenogeneic (mouse—>rat) bone marrow chimeras: evidence for normal development and clonal deletion of mouse T cells. Transplantation 69:731–736

    Article  PubMed  CAS  Google Scholar 

  • Motoike T, Loughna S, Perens E, Roman BL, Liao W, Chau TC, Richardson CD, Kawate T, Kuno J, Weinstein BM, Stainier DY, Sato TN (2000) Universal GFP reporter for the study of vascular development. Genesis 28:75–81

    Article  PubMed  CAS  Google Scholar 

  • Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30: 967–972

    Article  PubMed  CAS  Google Scholar 

  • Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319

    Article  PubMed  CAS  Google Scholar 

  • Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    Article  PubMed  CAS  Google Scholar 

  • Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U, Sato TN (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A 94:3058–3063

    Article  PubMed  CAS  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    PubMed  CAS  Google Scholar 

  • Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  PubMed  CAS  Google Scholar 

  • Van Os R, Thames HD, Konings AW, Down JD (1993) Radiation dose-fractionation and doserate relationships for long-term repopulating hemopoietic stem cells in a murine bone marrow transplant model. Radiat Res 136:118–125

    Article  PubMed  Google Scholar 

  • Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105:3017–3024

    Article  PubMed  CAS  Google Scholar 

  • Werner N, Priller J, Laufs U, Endres M, Bohm M, Dirnagl U, Nickenig G (2002) Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZG, Zhang L, Jiang Q, Chopp M (2002) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90:284–288

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murayama, T., Tepper, O.M., Asahara, T. (2004). Murine Bone Marrow Transplantation Models that Enable the Study of EPC Recruitment. In: Augustin, H.G. (eds) Methods in Endothelial Cell Biology. Springer Lab Manuals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18725-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18725-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21397-0

  • Online ISBN: 978-3-642-18725-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics