Skip to main content

The π-calculus as an Abstraction for Biomolecular Systems

  • Chapter
Modelling in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Abstract

Biochemical processes, carried out by networks of proteins, underlies the major functions of living cells ([8, 60]). Although such systems are the focus of intensive experimental research, the mountains of knowledge about the function, activity, and interaction of molecular systems in cells remain fragmented. While computational methods are key to addressing this challenge ([8, 60]), they require the adoption of a meaningful mathematical abstraction [50s]. The research of biomolecular systems has yet to identify and adopt such a unifying abstraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Akutsu, S. Miyano, and S. Kuhara. Algorithms for identifying boolean networks and related biological networks based on matrix multiplication and fingerprint function. Journal of Computational Biology, 7(3):331–343, 2000.

    Article  Google Scholar 

  2. T. Akutsu, S. Miyano, and S. Kuhara. Algorithms for inferring qualitative models of biological networks. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pacific Symposium on Biocomputing, volume 5, pages 293–304, World Scientific Press, 2000.

    Google Scholar 

  3. R. Alves and M.A. Savageau. Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics, 16(9):786–798, 2000.

    Article  Google Scholar 

  4. M. Antoniatti, B. Mishra, C. Piazza, A. Policriti, and M. Simeoni. Modeling cellular behavior with hybrid automata: bisimulation and collapsing. In Proceedings of the first international workshop on Computational Methods in Systems Biology, Lecture Notes in Computer Science. Springer-Verlag, 2003.

    Google Scholar 

  5. A. Arkin, J. Ross, and H.H. McAdams. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149:1633–1648, 1998.

    Google Scholar 

  6. G.D. Bader, I. Donaldson, C. Wolting, B.F. Ouellette, T. Pawson, and C.W. Hogue. BIND — the biomolecular interaction network database. Nucleic Acids Research, 29(1):242–245, 2001.

    Article  Google Scholar 

  7. U.S. Bhalla and R. Iyengar. Emergent properties of networks of biological signaling pathways. Science, 283(5400):381–387, 1999.

    Article  Google Scholar 

  8. D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends in Biochemical Sciences, 22(9):325–326, 1997.

    Article  Google Scholar 

  9. N. Chabrier and F. Fages. Symbolic model checking of biochemical networks. In Proceedings of the first international workshop on Computational Methods in Systems Biology, Lecture Notes in Computer Science. Springer-Verlag, 2003.

    Google Scholar 

  10. G. Ciobanu. Formal description of the molecular processes. In C. Martin-Vide and Gh. Paun, editors, Recent Topics in Mathematical and Computational Linguistics, pages 82–96. Publishing House of the Romanian Academy, 2000.

    Google Scholar 

  11. G. Ciobanu and M. Rotaru. Molecular interaction. Journal of Theoretical Computer Science, 289(1):801–827, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Ciobanu, V. Ciubotariu, and B. Tanasa. A π-calculus model of the Na pump. In Genome Informatics, pages 469–472, Tokyo, 2002. Universal Academy Press.

    Google Scholar 

  13. M. Curti, P. Degano, and C.T. Baldari. Casual calculus for biochemical modeling. In Proceedings of the first international workshop on Computational Methods in Systems Biology, Lecture Notes in Computer Science. Springer-Verlag, 2003.

    Google Scholar 

  14. P. Dhaeseleer, S. Liang, and R. Somogyi. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics, 16(8):707–726, 2000.

    Article  Google Scholar 

  15. K. Eilbeck, A. Brass, N. Paton, and C. Hodgman. Interact: an object oriented protein-protein interaction database. In Intelligent Systems for Molecular Biology, volume 7, pages 87–94, AAAI Press, 1999.

    Google Scholar 

  16. A. Finney, H. Sauro, M. Hucka, and H. Bolouri. An XML-based model description language for systems biology simulations. Technical report, California Institute of Technology, September 2000.

    Google Scholar 

  17. W. Fontana and L.W. Buss. The barrier of objects: from dynamical systems to bounded organizations. In J. Casti and A. Karlqvist, editors, Boundaries and Barriers, pages 56–116. Addison-Wesley, 1996.

    Google Scholar 

  18. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25):2340–2361, 1977.

    Article  Google Scholar 

  19. C. Girault and R. Valk. Petri Nets for Systems Engineering: A Guide to Modeling, Verification, and Applications. Springer-Verlag, 2002.

    Google Scholar 

  20. P.J.E. Goss and J. Peccoud. Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proceedings of the National Academy of Sciences USA, 95(12):6750–6755, 1998.

    Article  Google Scholar 

  21. P.J.E. Goss and J. Peccoud. Analysis of the stabilizing effect of ROM on the genetic network controlling cole1 plasmid replication. In R. B. Altman, A. K. Dunker, L. Hunter, and T. E. Klein, editors, Pacific Symposium on Biocomputing, volume 4, pages 65–76, World Scientific Press, 1999.

    Google Scholar 

  22. D. Harel and E. Gery. Executable object modeling with statecharts. IEEE Computer, 30(7):31–42, 1997.

    Article  Google Scholar 

  23. K.R. Heidtke and S. Schulze-Kremer. Deriving simulation models from a molecular biology knowledge base. In Proceedings of the 4th Workshop on Engineering Problems for Qualitative Reasoning of the 16th International Joint Conference on Artificial Intelligence, 1999.

    Google Scholar 

  24. C.-H. Heldin and M. Purton, editors. Signal Transduction. Modular Texts in Molecular and Cell Biology 1. Chapman and Hall, London, 1996.

    Google Scholar 

  25. R. Hofestadt and S. Thelen. Quantitative modeling of biochemical networks. In Silico Biology, 1(1):39–53, 1998.

    Google Scholar 

  26. M. Holcombe and A. Bell. Computational models of immunological pathways. In M. Holcombe and R. Paton, editors, Information Processing in Cells and Tissues: Proceedings of IPCAT’ 97, pages 213–226, Plenum Press, New York, 1998.

    Chapter  Google Scholar 

  27. T. Igarashi and T. Kaminuma. Development of a cell signalling networks database. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Proceedings of the Pacific Symposium of Biocomputing’ 97, pages 187–197, World Scientific Press, Singapore, 1997.

    Google Scholar 

  28. N. Kam, I.R. Cohen, and D. Harel. The immune system as a reactive system: Modeling T cell activation with statecharts. Bulletin of Mathematical Biology, 2002. An extended abstract of this paper appeared in the Proceedings of the Symposium on Human-Centric Computing Languages and Environments, Stresa, Italy, pages 15–22, 2001.

    Google Scholar 

  29. N. Kam, D. Harel, and I.R. Cohen. Modeling biological reactivity: statecharts vs. boolean logic. In Proceedings of the Second International Conference on Systems Biology, Pasadena, CA, 2001.

    Google Scholar 

  30. P.D. Karp, M. Krummenacker, S. Paley, and J. Wagg. Integrated pathway/ genome databases and their role in drug discovery. Trends in Biotechnology, 17(7):275–281, 1999.

    Article  Google Scholar 

  31. T. Kazic. Semiotes: a semantics for sharing. Bioinformatics, 16(12):1129–1144, 2000.

    Article  Google Scholar 

  32. H. Kitano. Computational systems biology. Nature, 420:206–210, 2002.

    Article  Google Scholar 

  33. R. Kuffner, R. Zimmer, and T. Lengauer. Pathway analysis in metabolic databases via differential metabolic display. Bioinformatics, 16(9):825–836, 2000.

    Article  Google Scholar 

  34. K.M. Kyoda, M. Muraki, and H. Kitano. Construction of a generalized simulator for multi-cellular organisms and its application to SMAD signal transduction. In R. B. Altman, A. K. Dunker, L. Hunter, and T. E. Klein, editors, Pacific Symposium on Biocomputing, volume 5, pages 317–328, World Scientific Press, Singapore, 2000.

    Google Scholar 

  35. H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid Petri net representation of gene regulatory network. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pacific Symposium on Biocomputing, volume 5, pages 341–352, World Scientific Press, Singapore, 2000.

    Google Scholar 

  36. H. Matsuno, R. Murakani, R. Yamane, N. Yamasaki, S. Fujita, H. Yoshimori, and S. Miyano. Boundary formation by notch signaling in drosophila multicellular systems: experimental observations and gene network modeling by genomic object net. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pacific Symposium on Biocomputing, volume 8, World Scientific Press, Singapore, 2003.

    Google Scholar 

  37. H.H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences USA, 94(3):814–819, 1997.

    Article  Google Scholar 

  38. H. H. McAdams and L. Shapiro. Circuit simulation of genetic networks. Science, 269(5224):650–656, 1995.

    Article  Google Scholar 

  39. L. Mendoza, D. Thieffry, and E. R. Alvarez-Buylla. Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics, 15(7-8):593–606, 1999.

    Article  Google Scholar 

  40. R. Milner. π-nets: a graphical form of the π-calculus. In D. Sannella, editor, Proceedings of the Fifth European Symposium on Programming (ESOP’ 94), volume 788 of Lecture Notes in Computer Science, pages 26–42, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  41. R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  42. P. Nielsen, D. Bullivant, C. Lloyd, D. Nickerson, S. Lett, K. Jim, and P. Noble. The CellML modeling language. http://www.cellml.org/public/specification/, 2000.

  43. H. Ogata, S. Goto, W. Fujibuchi, and M. Kanehisa. Computation with the Kegg pathway database. Biosystems, 47(1–2):119–128, 1998.

    Article  Google Scholar 

  44. F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal Aspects of Computing, 4(6):497–543, 1992.

    Article  MATH  Google Scholar 

  45. A. Pagnoni and A. Visconti. Detection and analysis of unexpected state components in biological systems. In Proceedings of the first international workshop on Computational Methods in Systems Biology, Lecture Notes in Computer Science. Springer-Verlag, 2003.

    Google Scholar 

  46. T. Pawson and P. Nash. Protein-protein interactions define specificity in signal transduction. Genes and Development, 141027–1047, 2000.

    Google Scholar 

  47. C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters, 80:25–31, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Quatrani. Visual Modeling with Rational Rose 2000 and UML. Addison-Wesley, 2000.

    Google Scholar 

  49. A. Regev, K. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients — a calculus for biological compartments. Manuscript in preparation.

    Google Scholar 

  50. A. Regev and E. Shapiro. Cellular abstractions. Nature, 419:343, 2002.

    Article  Google Scholar 

  51. A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of biochemical processes using the pi-calculus process algebra. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pacific Symposium on Biocomputing, volume 6, pages 459–470, World Scientific Press, Singapore, 2001.

    Google Scholar 

  52. W. Reisig and G. Rozenberg. Informal introduction to Petri nets. Lecture Notes in Computer Science: Lectures on Petri Nets I: Basic Models, vol. 1491, 1998.

    Google Scholar 

  53. M.G. Samsonova and V.N. Serov. Network: an interactive interface to the tools for analysis of genetic network structure and dynamics. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pacific Symposium on Biocomputing, volume 4, pages 102–111, World Scientific Press, Singapore, 1999.

    Google Scholar 

  54. L. Sanchez, J. van Helden, and D. Thieffry. Establishment of the dorso-ventral pattern during embryonic development of Drosophila melanogasater: a logical analysis. Journal of Theoretical Biology, 189(4):377–389, 1997.

    Article  Google Scholar 

  55. H.M. Sauro. Scamp: a general-purpose simulator and metabolic control analysis program. Computer Applications in Bioscience, 9(4):441–450, 1993.

    Google Scholar 

  56. S. Schuster, D.A. Fell, and T. Dandekar. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Computer Applications in Bioscience, 18(3):326–332, 2000.

    Google Scholar 

  57. E. Selkov, Y. Grechkin, N. Mikhailova, and E. Selkov. MPW: the metabolic pathways database. Nucleic Acids Research, 26(1):43–45, 1998.

    Article  Google Scholar 

  58. E. Shapiro. Concurrent Prolog: a progress report. In E. Shapiro, editor, Concurrent Prolog (vol. I), pages 157–187. MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  59. W. Silverman, M. Hirsch, A. Houri, and E. Shapiro. The Logix system user manual, version 1.21. In E. Shapiro, editor, Concurrent Prolog (vol. II), pages 46–78. MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  60. T.F. Smith. Functional genomics — bioinformatics is ready for the challenge. Trends in Genetics, 14(7):291–293, 1998.

    Article  Google Scholar 

  61. L. Stryer. Biochemistry. W.H. Freeman, 1995.

    Google Scholar 

  62. Z. Szallasi. Genetic network analysis in light of massively parallel biological data. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pacific Symposium on Biocomputing, volume 4, pages 5–16, World Scientific Press, Singapore, 1999.

    Google Scholar 

  63. D. Thieffry and D. Romero. The modularity of biological regulatory networks. Biosystems, 50(1):49–59, 1999.

    Article  Google Scholar 

  64. D. Thieffry and R. Thomas. Qualitative analysis of gene networks. In R.B. Altman, A.K. Dunker, L. Hunter, and T.E. Klein, editors, Pacific Symposium on Biocomputing, volume 3, pages 77–88, World Scientific Press, Singapore, 1998.

    Google Scholar 

  65. J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert D, and S. J. Wodak. Representing and analysing molecular and cellular function using the computer. Biological Chemistry, 381(9-10):921–935, 2000.

    Article  Google Scholar 

  66. B. Victor and F. Moller. The Mobility Workbench — a tool for the π-calculus. In D. Dill, editor, CAV’94: Computer Aided Verification, volume 818 of Lecture Notes in Computer Science, pages 428–440. Springer-Verlag, 1994.

    Google Scholar 

  67. D. Voet and J. Voet. Biochemistry. 2nd edition. John Wiley & Sons, 1995.

    Google Scholar 

  68. E. Wingender, X. Chen, E. Fricke, R. Geffers, R. Hehl, I. Liebich, M. Krull, V. Matys, H. Michael, R. Ohnhauser, M. Pruss, F. Schacherer, S. Thiele, and S. Urbach. The transfac system on gene expression regulation. Nucleic Acids Research, 29(1):281–283, 2001.

    Article  Google Scholar 

  69. I. Xenarios, E. Fernandez, L. Salwinski, X.J. Duan, M.J. Thompson, E.M. Marcotte, and D. Eisenberg. DIP: the database of interacting proteins: 2001 update. Nucleic Acids Research, 29(1):239–241, 2001.

    Article  Google Scholar 

  70. T.-M. Yi, Y. Huang, M.I. Simon, and J. Doyle. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences USA, 97(9):4649–4653, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Regev, A., Shapiro, E. (2004). The π-calculus as an Abstraction for Biomolecular Systems. In: Ciobanu, G., Rozenberg, G. (eds) Modelling in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18734-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18734-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62269-4

  • Online ISBN: 978-3-642-18734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics