Skip to main content

The Integration of Recognition and Cleavage: X-Ray Structures of Pre-Transition State Complex, Post-Reactive Complex, and the DNA-Free Endonuclease

  • Chapter
Restriction Endonucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 14))

Abstract

DNA has been selected as the biological information storage molecule for many reasons; one of which is its stability. The rate of spontaneous hydrolysis of DNA(at 24 ° C and pH 7.4) was estimated at 5.7×10−14 S−1 (Bunton et al.1960; Kumamoto et al. 1956; Serpersu et al. 1987); more recently, Radzicka and Wolfenden have estimated this value as 1.7xl0−13 S−1. (Radzicka and Wolfenden 1995).This corresponds to an estimated half-life of 130,000 years for a DNA phosphodiester bond in solution, placing DNAhydrolysis among the slowest of biochemical reactions in the absence of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken CR, McLaughlin LW, Gumport RI (1991) The highly homologous isoschizomers RsrI enodonuclease and EcoRI endonuclease do not recognize their target sequence identity. J Bioi Chem 266:19070–19078

    CAS  Google Scholar 

  • Alves J, Ruter T, Geiger R, Fliess A, Maass G, Pingoud A (1989) Changing the hydrogenbonding potential in the DNA binding site of EcoRI by site-directed mutagenesis drastically reduces the enzymatic activity, not, however, the preference of this restriction endonuclease for cleavage within the site-GAATTC-. Biochemistry 28:2678–2684

    Article  PubMed  CAS  Google Scholar 

  • Anderson JE (1993) Restriction endonucleases and modification methylases. Curr Opin Struct Biol 3 24–30

    Article  CAS  Google Scholar 

  • Athanasiadis A, Vlassi M, Kotsifaki D, Tucker PA, Wilson KS, Kokkinidis M (1994) Crystal structure of Pvull endonuclease reveals extensive structural homologies to EcoRV. Nature Struct Biol 1:469–475

    Article  PubMed  CAS  Google Scholar 

  • Bella J, Berman HM (1996) Crystallographic evidence for Ca-H—O=C hydrogen bonds in a collagen triple helix. J Mol Biol 264:734–742

    Article  PubMed  CAS  Google Scholar 

  • Brennan CA, Van Cleve MD, Gumport RI (1986) The effects of base analogue substitutions on the cleavage by the EcoRI restriction endonuclease of octadeoxyribonucleotides containing modified EcoRI recognition sequences. J Biol Chern 261:7270–7278

    CAS  Google Scholar 

  • Bunton CA, Mhala MM, Oldham KG, Vernon CA (1960) The reactions of organic phosphates. 3. The hydrolysis of dimethyl phosphate. J Chern Soc 81:3293–3301

    Article  Google Scholar 

  • Carter CW Jr, Kraut J (1974) A proposed model for interaction of polypeptides with RNA. Proc Natl Acad Sci USA 71:283–287

    Article  PubMed  CAS  Google Scholar 

  • Cheng C-Y, Wang S-L (1991) Structure acetate dihydrate. Acta Cryst C47:1734–1736

    CAS  Google Scholar 

  • Cheng X, Balendiran K, Schildkraut I, Anderson JE (1994) Structure of PvuII endonuclease with cognate DNA. EMBO J 13:3927–3935

    PubMed  CAS  Google Scholar 

  • Chmelikova R, Loub J, Petrjcek V (1986) Structure of manganese(II) sodium dihydrogenphosphite monohydrate. Acta Cryst C42:1281–1283

    CAS  Google Scholar 

  • Choi J (1994) Crystal structure analysis of site-directed mutants of EcoRI enodnuclease complexed to DNA, PhD Thesis, University of Pittsburgh

    Google Scholar 

  • Church GM, Sussman JL, Kim S-H (1977) Secondary structural complementarity between DNA and proteins. Proc Natl Acad Sci USA74:1458–1462

    Article  PubMed  CAS  Google Scholar 

  • Connolly BA, Eckstein F, Pingoud A (1984) The stereochemical course of the restriction endonuclease EcoRI-catalyzed reaction. J Biol Chern 259:10760–10763

    CAS  Google Scholar 

  • Cudennec Y, Riou A, Gerault Y (1989) Manganese(II) hydrogenphosphate trihydrate. Acta Cryst C45:1411–1412

    CAS  Google Scholar 

  • Derewenda ZS, Lee L, Derewenda U (1995) The occurrence of C-H — O hydrogen bonds in proteins. J Mol Biol 252:248–262

    Article  PubMed  CAS  Google Scholar 

  • Drew HR, Dickerson RE (1981) Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol BioI 151:535–556

    Article  CAS  Google Scholar 

  • Duan Y, Wilkosz P, Rosenberg JM (1996) Dynamic contributions to the DNA binding entropy of the EcoRI and EcoRVrestriction endonucleases. J Mol Biol 264:546–555

    Article  PubMed  CAS  Google Scholar 

  • Eftink MR, Anusiem AC, Biltonen RL (1983) Enthalpy-entropy compensation and heat capacity changes for protein — ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A.Biochemistry 22:3884–3896

    Article  PubMed  CAS  Google Scholar 

  • Freitag S, Le Trong I, Klumb L, Stayton PS, Stenkamp RE (1997) Structural studies of the streptavidin binding loop. Prot Sci 6:1157–1166

    Article  CAS  Google Scholar 

  • Fritz A, Kuster W, Alves J (1998) Asn(141) is essential for DNA recognition by EcoRI restriction endonuclease. FEBS Lett 438:66–70

    Article  PubMed  CAS  Google Scholar 

  • Garrett TPJ, Guss JM, Greeman HC (1983) trans-Diaquatetrakis(imidazole)manganese( II) dichloride.Acta Cryst C39:1031–1034

    CAS  Google Scholar 

  • Grable J, Frederick CA, Samudzi C, Jen-Jacobson L, Lesser D, Greene P, Boyer HW, Itakura K, Rosenberg JM (1984) Two-fold symmetry of crystalline DNA-EcoRI endonuclease recognition complexes. J Biomol Struct Dyn 1:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Hager P, Reich N, Day J, Coch TG, Boyer HW, Rosenberg JM, Greene P (1990) Probing the role of glutamic acid 144 in the EcoRI endonuclease using aspartic acid and gluta mine replacements. J Biol Chern 265:21520–21526

    CAS  Google Scholar 

  • Heitman J, Model P (1990a) Mutants of the EcoRI endonuclease with promiscuous substrate specificity implicate residues involved in substrate recognition. EMBOJ 9(10): 3369–3378

    CAS  Google Scholar 

  • Heitman J, Model P (1990b) Substrate recognition by the EcoRI endonuclease. Proteins 7:185–197

    Article  PubMed  CAS  Google Scholar 

  • leltsch A, Alves J, Maass G, Pingoud A.(1992) On the catalytic mechanism of EcoRI and EcoRV. A detailed proposal based on biochemical results, structural data and molecular modelling. FEBSLett 304:4–8

    Article  Google Scholar 

  • Jen-Jacobson L (1995) Structural-perturbation approaches to thermodynamics of sitespecific protein-DNA interactions. In: Johnson ML, Ackers GK (eds) Methods in enzymology, vol 259.Academic Press, San Diego, pp 305–344

    Google Scholar 

  • Jen-Jacobson L (1997) Protein-DNA recognition complexes: conservation of structure and binding energy in the transition state. Biopolymers 44:153–180

    Article  PubMed  CAS  Google Scholar 

  • Jen-Jacobson L, Engler LE, Ames JT, Kurpiewski, MR, Grigorescu A (2000a) Thermodynamic paramters of specific and nonspecific protein-DNA binding. Supermol Chern 12(2):143 + Special Issue

    Article  CAS  Google Scholar 

  • Jen-Iacobson L, Engler LE, Jacobson LA (2000b) Structural and thermodynamic strategies for site-specific DNA binding proteins.[erratum appears in Structure Fold Des 2000, Dec 15,8(12):251 following]. Structure 8:1015–1023

    Article  Google Scholar 

  • Jen-Jacobson L, Engler LE, Lesser DR, Kurpiewski M R, Yee C, McVerry B (1996) Structural adaptations in the interaction of EcoRI endonuclease with methylated GAATTC sites.EMBO J 15:2870–2882

    PubMed  CAS  Google Scholar 

  • Jen-Jacobson L, Lesser D, Kurpiewski M (1986) The enfolding arms of EcoRI endonuclease: role in DNA binding and cleavage. Cell 45:619–629

    Article  PubMed  CAS  Google Scholar 

  • Jen-Jacobson L, Lesser DR, Kurpiewski MR (1991) DNA sequence discrimination by EcoRI endonuclese. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology. Springer, Berlin Heidelberg New York, pp 142–170

    Google Scholar 

  • Kim Y, Choi J, Grable JC, Greene P, Hager P, Rosenberg JM (1994) Studies on the canonical DNA-EcoRI endonuclease complex and the EcoRI kink. In: Sarma R, Sarma MH (eds) Structural biology: the state of the art. Adenine Press, Schenectady, pp 225–246

    Google Scholar 

  • Kim YC, Grable JC, Love R, Greene PJ, Rosenberg JM (1990) Refinement of EcoRI endonuclease crystal structure: a revised protein chain tracing. Science 249:1307–1309

    Article  PubMed  CAS  Google Scholar 

  • King K, Benkovic SJ, Modrich P (1989) Glu-111 is required for activation of the DNA cleavage center of EcoRI endonuclease. J Biol Chern 264:11807–11815

    CAS  Google Scholar 

  • Kumamoto J, COX JR, Westheimer FH (1956) J Am Chern Soc 77:4858–4860

    Article  Google Scholar 

  • Kumar S, Duan Y, Kollman PA, Rosenberg JM (1994) Molecular-dynamics simulations suggest that the EcoRI kink is an example of molecular strain. J Biomol Str Dyn 12:487–525

    Article  CAS  Google Scholar 

  • Lesser DR, Grajkowski A, Kurpiewski MR, Koziolkiewicz M, Stec W, Jen-Jacobson L (1992) Stereoselective interaction with chiral phosphorothioates at the central DNA kink of the EcoRI endonuclease-GAATTC complex. J Biol Chern 267:24810–24818

    CAS  Google Scholar 

  • Lesser DR, Kurpiewski MR, Jen-Jacobson L (1990a) The energetic basis of sequence specificity in the interaction of EcoRI endonuclease with DNA.Science 250:776–786

    Article  PubMed  CAS  Google Scholar 

  • Lesser DR, Kurpiewski MR, Jen-Jacobson L (1990b) The energetic basis of specificity in the EcoRI endonuclease-DNA interaction. Science 250:776–786

    Article  PubMed  CAS  Google Scholar 

  • Lesse, DR, Kurpiewski MR, Waters T, Connolly BA, Jen-Jacobson L (1993) Facilitated distortion of the DNA site enhances EcoRI endonuclease-DNA recognition [see comments]. Proc Natl Acad Sci USA 90:7548–7552

    Article  Google Scholar 

  • Lightfoot P, Cheetham AK (1987) Structure of manganese(II) trisodium tripolyphosphate dodecahydrate. Acta Cryst C43:4–7

    CAS  Google Scholar 

  • Lis T (1982) Structure of manganese(II) L-Iactate Dihydrate. Acta Cryst B38:937–939

    CAS  Google Scholar 

  • Lis T (1983). Structure of manganses(II) maleate trihydrate, and reeinvestigation of the structure of manganese(II) hydrogen tetrahydrate. Acta Cryst C39:39–41

    CAS  Google Scholar 

  • Lis T (1992) Structure of zinc(II), magnesium(II) and manganese(II) bis(phosphoenolpyruvate) dihydrate. Acta Cryst C48:424–427

    CAS  Google Scholar 

  • Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB (1998) A role for CH—O interactions in protein—DNA recognition. J Mol Biol 277:1129–1140

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin LW, Benseler F, Graeser E, Piel N, Scholtissek S (1987) Effects of functional group changes in the EcoRI recognition site on the cleavage reaction catalyzed by the endonuclease. Biochem 26:7238–7245

    Article  CAS  Google Scholar 

  • Muir RS, Flores H, Zinder ND, Model P, Soberon X, Heitman J (1997) Temperature-sensitive mutants of the EcoRI endonuclease. J Mol Biol 274:722–737

    Article  PubMed  CAS  Google Scholar 

  • Needels MC, Fried SR, Love R, Rosenberg JM, Boyer H W, Greene PJ (1989) Determinants of EcoRI endonuclease sequence discrimination. Proc Natl Acad Sci USA 86:3579–3583

    Article  PubMed  CAS  Google Scholar 

  • Newman M, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK (1994) Structure of restriction endonuclease bamhi phased at 1.95Åresolution by MADanalysis. Structure 2:439–452

    Article  PubMed  CAS  Google Scholar 

  • Oelgeschlager T, Geiger R, Ruter T, Alves J, Fliess A, Pingoud A (1990) Probing the function of individual amino acid residues in the DNAbinding site of the EcoRI restriction endonuclease by analysing the toxicity of genetically engineered mutants. Gene 89:19–27

    Article  PubMed  CAS  Google Scholar 

  • Otwinowski Z, Schevitz RW, Zhang RG, Lawson CL, Ioachimiak A, Marmorstein RQ, Luisi BF, Sigler PB (1988) Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335:321–329

    Article  PubMed  CAS  Google Scholar 

  • Parkinson G, Vojtechnovsky J, Clowney L, Brunger A T, Berman HM (1996) New parameters for the refinement of nucleic acid containing structures. Acta Cryst D52:57–64

    CAS  Google Scholar 

  • Perona JJ, Martin AM (1997a) Conformational transitions and structural deformability of EcoRVendonuclease revealed by crystallographic analysis. J Mol Bioi 273:207–225

    Article  CAS  Google Scholar 

  • Perona JJ, Martin AM (1997b). Conformational transitions and structural deformability of EcoRV endonuclease revealed by crystallographic analysis. J Mol Biol 273:207–225

    Article  PubMed  CAS  Google Scholar 

  • Perry KM, Fauman EB, Finer-Moore JS, Montfort WR, Maley GF, Maley F, Stroud RM (1990) Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins: Struct Funct Genet 8:315–333

    Article  CAS  Google Scholar 

  • Pingoud A, Ieltsch A (1997) Recognition and cleavage of DNA by Type-II restriction endonucleases. Eur J Biochem 246:1–22

    Article  PubMed  CAS  Google Scholar 

  • Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267:90–93

    Article  PubMed  CAS  Google Scholar 

  • Raghunathan S, Chandross RJ, Kretsinger RH, Allison TJ, Penington CT, Rule GS (1994) Crystal structure of human class mu glutathione transferase GSTM2-2. Effects oflattice packing on conformational heterogeneity. J Mol Biol 238:815–832

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein Chern 34:167–339

    Article  CAS  Google Scholar 

  • Rosenberg JM (199l) Structure and function of restriction endonucleases. Curr Opin Struct Biol 1:104–113

    Google Scholar 

  • Ross NL, Reynard B, Guyot F (199l) Structure of high-pressure Mn GeO3 ilmenite. Acta Cryst C47:1794–1796

    Google Scholar 

  • Samudzi CT (1990) Use of the molecular replacement method in structural studies of EcoRI endonuclease, PhD, University of Pittsburgh

    Google Scholar 

  • Schneider B, Cohen DM, Schleifer L, Srinivasan AR, Olson WK, Berman HM (1993) A systematic method for studying the spatial distribution of water molecules around nucleic acid bases. Biophys J 65:2291–2303

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC, Rosenberg JM, Rich A (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA 73:804–808

    Article  PubMed  CAS  Google Scholar 

  • Serpersu EH, Shortie D, Mildvan AS (1987) Kinetic and magnetic resonance studies of active-site mutants of staphylococcoal nuclease: factors contributing to catalysis. Biochemistry 26:1289–1300

    Article  PubMed  CAS  Google Scholar 

  • Spolar RS, Record MT Jr (1994) Coupling oflocal folding to site-specific binding of proteins to DNA.Science 263:777–784

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA (1990) Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. Q Rev Biophys 23:205–280

    Article  PubMed  CAS  Google Scholar 

  • Tanaka I, Appelt K, Dij KL, White SW, Wilson KS(1984) 3Åresolution structure of a protein with histone-like properties in prokaryotes. Nature 310:376–381

    Article  PubMed  CAS  Google Scholar 

  • Thielking V, Alves J, Fleiss A, Maass G, Pingoud A (1990) Accuracy of the EcoRI endonuclease: binding and cleavage studies with oligodeoxynucleotide substrates containing degenerate recognition sequences. Biochemistry 29:4682–4691

    Article  PubMed  CAS  Google Scholar 

  • Thielking V, Selent U, Kohler E, Wolfes H, Pieper U, Geiger R, Urbanke C, Winkler FK, Pingoud A (1991) Site-directed mutagenesis studies with EcoRV restriction endonuclease to identify regions involved in recognition and catalysis. Biochemistry 30:64166422

    Article  Google Scholar 

  • Thomas M, Davis RW(1975) Studies on the cleavage of bacteriophage lambda DNAwith EcoRI restriction endonuclease. J Mol Biol 91:315–328

    Article  PubMed  CAS  Google Scholar 

  • Venclovas C, Siksnys V (1995) Different enzymes with similar structures involved in Mg+2-mediated polynucleotidyl transfer [letter]. Nat Struct Biol 2:838–841

    Article  PubMed  CAS  Google Scholar 

  • Venclovas C, Timinskas A, Siksnys V (1994) Five-stranded beta sheet sandwiched with two alpha-helices: a structural link between restriction endonucleases EcoRI and EcoRV. Proteins 20:279–282

    Article  PubMed  CAS  Google Scholar 

  • Vigil D, Gallagher SC, Trewhella J, Garcia AE (2001) Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Biophys J 80:2082–2092

    Article  PubMed  CAS  Google Scholar 

  • Watrob H, Liu W, Chen Y, Bartlett SG, Jen-Jacobson L, Barkley MD (2001) Solution conformation of EcoRI restriction endonuclease changes upon binding of cognate DNA and Mg+2 cofactor. Biochemistry 40:683–692

    Article  PubMed  CAS  Google Scholar 

  • White SW, Appelt K, Wilson KS, Tanaka I (1989) A protein structural motif that bends DNA. Proteins 5:281–288

    Article  PubMed  CAS  Google Scholar 

  • Wilkosz PA, Chandrasekhar K, Rosenberg JM (1995) Preliminary characterization of EcoRI*-DNA Co-crystals: factorial design strategies for oligonucleotide sequences used in protein-DNA cocrystals. Acta Crsyt D 51:938–945

    Article  CAS  Google Scholar 

  • Winkler FK (1992) Structure and function of restriction endonucleases. Curr Opin Struct Biol 2:93–99

    Article  Google Scholar 

  • Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS(1993a) The crystal structure of EcoRVendonuclease and of its complexes with cognate and non cognate DNA.EMBO J 12:1781–1795

    PubMed  CAS  Google Scholar 

  • Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PO, Petratos K, Wilson KS(1993b) The crystal structure of EcoRVendonuclease and of its complexes with cognate And non-cognate DNA fragments. EMBO J 12:1781–1795

    PubMed  CAS  Google Scholar 

  • Wolfes H, Alves J, Fliess A, Geiger R, Pingoud A (1986) Site directed mutagenesis experiments suggest that Glu 111, Glu 144 and Arg 145 are essential for endonucleolytic activity of EcoRI. Nucleic Acids Res 14:9063–9080

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky SD, Love R, McClarin JA, Rosenberg JM, Boyer HW, Greene PJ (1987) Clustering of null mutations in the EcoRI endonuclease. Proteins 2:273–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grigorescu, A., Horvath, M., Wilkosz, P.A., Chandrasekhar, K., Rosenberg, J.M. (2004). The Integration of Recognition and Cleavage: X-Ray Structures of Pre-Transition State Complex, Post-Reactive Complex, and the DNA-Free Endonuclease. In: Pingoud, A.M. (eds) Restriction Endonucleases. Nucleic Acids and Molecular Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18851-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18851-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62324-0

  • Online ISBN: 978-3-642-18851-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics