Skip to main content

Multi-objective Evolutionary Algorithms: Introducing Bias Among Pareto-optimal Solutions

  • Chapter
Advances in Evolutionary Computing

Part of the book series: Natural Computing Series ((NCS))

Abstract

Since the beginning of the 1990s, research and application of multiobjective evolutionary algorithms (MOEAs) have attracted increasing attention. This is mainly due to the ability of evolutionary algorithms to find multiple Paretooptimal solutions in one single simulation run. In this chapter, we present an overview of MOEAs and then discuss a particular algorithm in detail. Although MOEAs can find multiple Pareto-optimal solutions, often, users need to impose a particular order of priority to objectives. In this chapter, we present a few classical techniques to identify a preferred or a compromise solution, and finally suggest a biased sharing technique which can be used during the optimization phase to find a biased distribution of Pareto-optimal solutions in the region of interest. The results are encouraging and suggest further application of the proposed strategy to more complex multi-objective optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Branke, J., Kaußler, T., and Schmeck, H. (2000) Guiding multi-objective evolutionary algorithms towards interesting regions. Technical Report No. 399, Institute AIFB, University of Karlsruhe, Germany

    Google Scholar 

  2. Chankong, V., and Haimes, Y. Y. (1983) Multiobjective decision making theory and methodology. New York: North-Holland

    Google Scholar 

  3. Coello, C. A. C. (1999) A comprehensive survey of evolutionary based multi-objective optimization techniques, Knowledge and Information Systems 1(3), 269–308

    Google Scholar 

  4. Corne, D., Knowles, J., and Oates, M. (2000) The Pareto envelope-based selection algorithm for multiobjective optimization. Proceedings of the Parallel Problem Solving from Nature VI Conference, 839–848

    Google Scholar 

  5. Cunha, A.G., Oliveira, P., and Covas, J.A. (1997) Use of genetic algorithms in multicriteria optimization to solve industrial problems. Proceedings of the Seventh International Conference on Genetic Algorithms, 682–688

    Google Scholar 

  6. Deb, K. (1995) Optimization for engineering design: Algorithms and examples. New Delhi: Prentice Hall

    Google Scholar 

  7. Deb, K. (1999) Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design. In K. Miettinen, M. Mäkelä, P. Neittaanmäki, and J. P ériaux (Eds.) Proceedings of Evolutionary Algorithms in Engineering and Computer Science (EUROGEN-99), (pp. 135–161)

    Google Scholar 

  8. Deb, K. (1999) Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation Journal, 7(3), 205–230

    Article  Google Scholar 

  9. Deb, K. (2001) Nonlinear goal programming using multi-objective genetic algorithms. Journal of the Operational Research Society, 52(3), 291–302

    Article  MathSciNet  MATH  Google Scholar 

  10. Deb, K. (2001) Multi-objective optimization using evolutionary algorithms. Chichester, UK: Wiley

    MATH  Google Scholar 

  11. Deb, K. and Agrawal, R. B. (1995) Simulated binary crossover for continuous search space. Complex Systems, 9, 115–148

    MathSciNet  MATH  Google Scholar 

  12. Deb, K. and Goldberg, D. E. (1989) An investigation of niche and species formation in genetic function optimization. Proceedings of the Third International Conference on Genetic Algorithms, 42–50

    Google Scholar 

  13. Deb, K. and Goyal, M. (1998) A robust optimization procedure for mechanical component design based on genetic adaptive search. Transactions of the ASME: Journal of Mechanical Design, 120(2), 162–164

    Article  Google Scholar 

  14. Deb, K. and Kumar, A. (1995) Real-coded genetic algorithms with simulated binary crossover: Studies on multi-modal and multi-objective problems. Complex Systems, 9(6), 431–454

    Google Scholar 

  15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, 849–858

    Google Scholar 

  16. Eheart, J. W., Cieniawski, S. E., and Ranjithan, S. (1993) Genetic-algorithm-based design of groundwater quality monitoring system. WRC Research Report No. 218. Urbana: Department of Civil Engineering, The University of Illinois at Urbana-Champaign

    Google Scholar 

  17. Fonseca, C. M. and Fleming, P. J. (1993) Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization, Proceedings of the Fifth International Conference on Genetic Algorithms, 416–423

    Google Scholar 

  18. Fonseca, C. M. and Fleming, P.J. (1995) An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 3(1) 1–16

    Article  Google Scholar 

  19. Fonseca, C.M. and Fleming, P. J. (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part II: Application example. IEEE Transactions on Systems, Man, and Cybernetics: Part A: Systems and Humans, 28(1), 38–47

    Article  Google Scholar 

  20. Goldberg, D. E. (1989) Genetic algorithms for search, optimization, and machine learning. Reading, MA: Addison-Wesley

    Google Scholar 

  21. Goldberg, D. E. and Deb, K. (1991) A comparison of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms I, 69–93

    Google Scholar 

  22. Goldberg, D.E. and Richardson, J. (1987) Genetic algorithms with sharing for multimodal function optimization. Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 41–49

    Google Scholar 

  23. Hajela, P. and Lin, C.-Y. (1992) Genetic search strategies in multi-criterion optimal design, Structural Optimization, 4 99–107

    Article  Google Scholar 

  24. Horn, J. (1997) Multicriterion decision making. In T. Bäck Handbook of Evolutionary Computation. Bristol: Institute of Physics Publishing and New York: Oxford University Press

    Google Scholar 

  25. Horn, J. and Nafploitis, N., and Goldberg, D. E. (1994) A niched Pareto genetic algorithm for multi-objective optimization. Proceedings of the First IEEE Conference on Evolutionary Computation, 82–87

    Google Scholar 

  26. Keeney, R.L. and Raiffa, H. (1993) Decisions with multiple objectives: PReferences and value tradeoffs, Cambridge University Press

    Google Scholar 

  27. Knowles, J. and Corne, D. (1999) The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimisation. Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, New Jersey: IEEE Service Center, 98–105

    Google Scholar 

  28. Laumanns, M., Rudolph, G., and Schwefel, H.-P. (1998) A spatial predator-prey approach to multi-objective optimization: A preliminary study. Proceedings of the Parallel Problem Solving from Nature V Conference, 241–249

    Google Scholar 

  29. Miettinen, K. (1999) Nonlinear multiobjective optimization. Boston: Kluwer

    MATH  Google Scholar 

  30. Mitra, K., Deb, K., and Gupta, S. K. (1998) Multiobjective dynamic optimization of an industrial Nylon 6 semibatch reactor using genetic algorithms. Journal of Applied Polymer Science, 69(1), 69–87

    Article  Google Scholar 

  31. Obayashi, S., Takahashi, S., and Takeguchi, Y. (1998) Niching and elitist models for MOGAs. Parallel Problem Solving from Nature V Conference, 260–269

    Google Scholar 

  32. Parks, G.T. and Miller, I. (1998) Selective breeding in a multi-objective genetic algorithm. Proceedings of the Parallel Problem Solving from Nature V Conference, 250–259

    Google Scholar 

  33. Parmee, I. C., Cevtković, D., Watson, A.W., and Bonham, C. R. (2000) Multiobjective satisfaction within an interactive evolutionary design environment. Evolutionary Computation, 8(2), 197–222

    Article  Google Scholar 

  34. Reklaitis, G.V., Ravindran, A. and Ragsdell, K. M. (1983) Engineering optimization methods and applications. New York: Wiley

    Google Scholar 

  35. Rosenberg, R. S. (1967) Simulation of genetic populations with biochemical properties. PhD dissertation. University of Michigan

    Google Scholar 

  36. Scharfer, J. D. (1984) Some experiments in machine learning using vector evaluated genetic algorithms. Doctoral dissertation, Vanderbilt University

    Google Scholar 

  37. Sen, P. and Yang, J.-B. (1998) Multiple criteria decision support in engineering design. London: Springer

    Book  Google Scholar 

  38. Srinivas, N. and Deb, K. (1994) Multi-Objective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation, 2(3), 221–248

    Article  Google Scholar 

  39. Steuer, R. E. (1986) Multiple criteria optimization: Theory, computation, and application. New York: Wiley

    MATH  Google Scholar 

  40. Van Veldhuizen, D. and Lamont, G. B. (1998) Multiobjective evolutionary algorithm research: A history and analysis. Report Number TR-98–03. Wright-Patterson AFB, Ohio: Department of Electrical and Computer Engineering, Air Force Institute of Technology

    Google Scholar 

  41. Weile, D.S., Michielssen, E., and Goldberg, D. E. (1996) Genetic algorithm design of Pareto-optimal broad band microwave absorbers. IEEE Transactions on Electromagnetic Compatibility, 38(4), 518–525

    Article  Google Scholar 

  42. Yu, P. L. (1973) A class of solutions for group decision problems. Management Science, 19(8), 936–946

    Article  MATH  Google Scholar 

  43. Zeleny, M. (1973) Compromise programming. In J. L. Cochrane and M. Zeleny (Eds.), Multiple Criteria Decision Making. Columbia, South Carolina: University of South Carolina Press, (pp. 262–301)

    Google Scholar 

  44. Zitzler, E. and Thiele, L. (1998) Multiobjective optimization using evolutionary algorithms—A comparative case study. Parallel Problem Solving from Nature V Conference, 292–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deb, K. (2003). Multi-objective Evolutionary Algorithms: Introducing Bias Among Pareto-optimal Solutions. In: Ghosh, A., Tsutsui, S. (eds) Advances in Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18965-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18965-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62386-8

  • Online ISBN: 978-3-642-18965-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics