Skip to main content

A Bending-gradient Theory for Thick Laminated Plates Homogenization

  • Chapter
  • First Online:
Mechanics of Generalized Continua

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 7))

  • 1628 Accesses

Abstract

This work presents a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Love-Kirchhoff theory, to which six components are added representing the gradient of the bending moment. The Bending-gradient theory is an extension to arbitrary multilayered plates of the Reissner-Mindlin theory which appears as a special case when the plate is homogeneous. The new theory is applied to multilayered plates and its predictions are compared to full 3D Pagano’s exact solutions and other approaches. It gives good predictions of both deflection and shear stress distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/H goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pagano, N.: Exact Solutions for Composite Laminates in Cylindrical Bending. Journal of Composite Materials 3(3), 398–411 (1969)

    Article  Google Scholar 

  2. Caillerie, D.: Thin elastic and periodic plates. Mathematical Methods in the Applied Sciences 6(2), 159–191 (1984)

    Article  Google Scholar 

  3. Lewinski, T.: Effective Models Of Composite Periodic Plates. 1. Asymptotic Solution. International Journal of Solids and Structures 27(9), 1155–1172 (1991)

    Article  Google Scholar 

  4. Reddy, J.N.: On Refined Computational Models Of Composite Laminates. International Journal for Numerical Methods in Engineering 27(2), 361–382 (1989)

    Article  Google Scholar 

  5. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Archives of Computational Methods in Engineering 9(2), 87–140 (2002)

    Article  Google Scholar 

  6. Diaz Diaz, A., CaronJ.-F. Carreira, R.P.: Model for laminates. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics 329(12), 873–879 (2001)

    Article  Google Scholar 

  7. Caron, J.F., Diaz, A.D., Carreira, R.P., Chabot, A.: A.Ehrlacher, Multi-particle modelling for the prediction of delamination in multi-layered materials. Composites Science And Technology 66(6), 755–765 (2006)

    Article  Google Scholar 

  8. DiazDiaz, A., Caron, J.F., Ehrlacher, A.: Analytical determination of the modes I, II and III energy release rates in a delaminated laminate and validation of a delamination criterion. Composite Structures 78(3), 424–432 (2007)

    Article  Google Scholar 

  9. Nguyen, T.-K., Sab, K., Bonnet, G.: First-order shear deformation plate models for functionally graded materials. Composite Structures 83(1), 25–36 (2008)

    Article  Google Scholar 

  10. Nguyen, T.-K., Sab, K., Bonnet, G.: Green’s operator for a periodic medium with traction-free boundary conditions and computation of the effective properties of thin plates. International Journal of Solids and Structures 45(25–26), 6518–6534 (2008)

    Article  Google Scholar 

  11. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics 12, 68–77 (1945)

    Google Scholar 

  12. Caron, J.-F., Sab, K.: Un nouveau modèle de plaque multicouche épaisse. A new model for thick laminates. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics 329(8), 595–600 (2001)

    Article  Google Scholar 

  13. Nguyen, V.-T., Caron, J.-F., Sab, K.: A model for thick laminates and sandwich plates. Composites Science and Technology 65(3–4), 475–489 (2005)

    Article  Google Scholar 

  14. Boutin, C.: Microstructural effects in elastic composites. International Journal of Solids and Structures 33(7), 1023–1051 (1996)

    Article  Google Scholar 

  15. Buannic, N., Cartraud, P.: Higher-order effective modeling of periodic heterogeneous beams. I. Asymptotic expansion method. International Journal of Solids and Structures 38(40–41), 7139–7161 (2001)

    Article  Google Scholar 

  16. Lebée, A., Sab, K.: A bending gradient model for thick plates, Part I: Theory, submitted

    Google Scholar 

  17. Lebée, A., Sab, K.: A Cosserat multiparticle model for periodically layered materials. Mechanics Research Communications 37(3), 293–297 (2010)

    Article  Google Scholar 

  18. Lebée, A., Sab, K.: A bending gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending, submitted

    Google Scholar 

  19. Whitney, J.: Stress Analysis of Thick Laminated Composite and Sandwich Plates. Journal of Composite Materials 6(4), 426–440 (1972)

    Article  Google Scholar 

  20. ABAQUS, ABAQUS/Standard user’s manual, version 6.7, (2007)

    Google Scholar 

  21. Pagano, N.: Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates. Journal of Composite Materials 4(1), 20–34 (1970)

    Google Scholar 

  22. Pagano, N.: Influence of Shear Coupling in Cylindrical. Bending of Anisotropic Laminates. Journal of Composite Materials 4(3), 330–343 (1970)

    Article  Google Scholar 

  23. Lebée, A., Sab, K.: Reissner-Mindlin Shear Moduli of a Sandwich Panel with Periodic Core Material. in: Mechanics of Generalized Continua, vol. 21 of Advances in Mechanics and Mathematics, Springer New York, 169–177, (2010d)

    Google Scholar 

  24. Lebée, A., Sab, K.: Transverse shear stiffness of a chevron folded core used in sandwich construction. International Journal of Solids and Structures 47(18–19), 2620–2629 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Lebée .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lebée, A., Sab, K. (2011). A Bending-gradient Theory for Thick Laminated Plates Homogenization. In: Altenbach, H., Maugin, G., Erofeev, V. (eds) Mechanics of Generalized Continua. Advanced Structured Materials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19219-7_4

Download citation

Publish with us

Policies and ethics