Skip to main content

Stochastic Gene Expression and the Processing and Propagation of Noisy Signals in Genetic Networks

  • Chapter
Information Processing and Biological Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 11))

Abstract

Over the past few years, it has been increasingly recognized that stochastic mechanisms play a key role in the dynamics of biological systems. Genetic networks are one example where molecular-level fluctuations are of particular importance. Here stochasticity in the expression of gene products can result in genetically identical cells displaying significant variation in biochemical or physical attributes. This variation can influence individual and population-level fitness.

Cells also receive noisy signals from their environments, perform detection and transduction with stochastic biochemistry. Several mechanisms, including cascades and feedback loops, allow the cell to manipulate noisy signals and maintain signal fidelity. Furthermore through a biochemical implementation of Bayes’s rule, it has been shown that genetic networks can act as inference modules, inferring from intracellular conditions the likely state of the extracellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, M., Mettetal, J.T., van Oudenaarden, A.: Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471–475 (2008)

    Article  Google Scholar 

  2. Andrews, B.W., Yi, T.-M., Iglesias, P.A.: Optimal Noise Filtering in the Chemotactic Response of Escherichia coli. PLoS Comput. Biol. 2(11), 154 (2006)

    Article  Google Scholar 

  3. Andrews, B.W., Iglesias, P.A.: An Information-Theoretic Characterization of the Optimal Gradient Sensing Response of Cells. PLoS Comput. Biol. 3(8), e153 (2007)

    Article  MathSciNet  Google Scholar 

  4. Austin, D.W., Allen, M.S., McCollum, J.M., Dar, R.D., et al.: Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006)

    Article  Google Scholar 

  5. Avery, S.V.: Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006)

    Article  Google Scholar 

  6. Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., et al.: Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006)

    Article  Google Scholar 

  7. Bar-Or, R.L., Maya, R., Segel, L.A., Alon, U., et al.: Generation of oscillations by the p53-Mdm2 feedback loop.: A theoretical and experimental study. PNAS 97, 11250–11255 (2000)

    Article  Google Scholar 

  8. Becskei, A., Serrano, L.: Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)

    Article  Google Scholar 

  9. Bishop, A.L., Rab, F.A., Sumner, E.R., Avery, S.V.: Phenotypic heterogeneity can enhance rare-cell survival in ‘stress-sensitive’ yeast populations. Molec. Microbiol. 63, 507–520 (2007)

    Article  Google Scholar 

  10. Blake, W.J., Balazsi, G., Kohanski, M.A., Isaacs, F.J., et al.: Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006)

    Article  Google Scholar 

  11. Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  Google Scholar 

  12. Booth, I.R.: Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78, 19–30 (2002)

    Google Scholar 

  13. Brewer, B.J., Chlebowicz-Sledziewska, E., Fangman, W.L.: Cell Cycle Phases in the Unequal Mother/Daughter Cell Cycles of Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 2529–2531 (1984)

    Google Scholar 

  14. Brock, A., Chang, H., Huang, S.: Non-genetic heterogeneity - a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10, 336–342 (2009)

    Article  Google Scholar 

  15. Chang, H.H., Hemberg, M., Barahona, M., Ingber, E., Huang, S.: Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008)

    Article  Google Scholar 

  16. Charlebois, D.A., Intosalmi, J., Fraser, D., Kaern, M.: An Algorithm for the Stochastic Simulation of Gene Expression and Heterogeneous Population Dynamics. Commun. Comput. Phys. 9, 89–112 (2011)

    MathSciNet  Google Scholar 

  17. Dekel, E., Alon, U.: Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005)

    Article  Google Scholar 

  18. Dublanche, Y., Michalodimitrakis, K., Kümmerer, N., Foglierini, M., et al.: Noise in transcription negative feedback loops: simulation and experimental analysis. Molec. Syst. Biol. (2006), doi:10.1038/msb4100081

    Google Scholar 

  19. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  20. Ferrell Jr., J.E., Machleder, E.M.: The Biochemical Basis of an All-or-None Cell Fate Switch in Xenopus Oocytes. Science 8, 895–898 (1998)

    Article  Google Scholar 

  21. Fraser, D., Kaern, M.: A chance at survival: gene expression noise and phenotypic diversification strategies. Molec. Microbiol. 71, 1333–1340 (2009)

    Article  Google Scholar 

  22. Fraser, H.B., Hirsh, A.E., Giaever, G., Kumm, J., et al.: Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137 (2004)

    Google Scholar 

  23. Gambacorti-Passerini, C.B., Gunby, R.H., Piazza, R., Galietta, A., et al.: Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet. Oncol. 4, 75–85 (2003)

    Article  Google Scholar 

  24. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  25. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  26. Gillespie, D.T.: Stochastic Chemical Kinetics. In: Yip, S. (ed.) Handbook of Materials and Modeling, sec. 5.11. Springer, Heidelberg (2005)

    Google Scholar 

  27. Gorre, M.E., Mohammed, M., Ellwood, K., Hsu, N., et al.: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001)

    Article  Google Scholar 

  28. Hooshangi, S., Thiberge, S., Weiss, R.: Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. PNAS 102, 3581–3586 (2005)

    Article  Google Scholar 

  29. Hornung, G., Barkai, N.: Noise Propagation and Signaling Sensitivity in Biological Networks: A Role for Positive Feedback. PLoS Comput. Biol. 4 (2008), doi:10.1371/journal.pcbi.0040008

    Google Scholar 

  30. Kaern, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expression: From theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005)

    Article  Google Scholar 

  31. Kaufmann, B.B., van Oudenaarden, A.: Stochastic gene expression: from single molecules to the proteome. Curr. Opin. Genet. Dev. 17, 107–112 (2007)

    Article  Google Scholar 

  32. Libby, E., Perkins, T.J., Swain, P.S.: Noisy information processing through transcriptional regulation. PNAS 104, 7151–7156 (2007)

    Article  Google Scholar 

  33. Lopez-Maury, L., Marguerat, S., Bahler, J.: Tuning gene expression to changing environments: from rapid response to evolutionary adaptation. Nat. Rev. Gen. 9, 583–593 (2008)

    Article  Google Scholar 

  34. Ma, L., Wagner, J., Rice, J.J., Wenwei, H., Arnold, J.L., Stolovitzky, G.A.: A plausible model for the digital response of p53 to DNA damage. PNAS 102, 14266–14271 (2005)

    Article  Google Scholar 

  35. Maheshri, N., O’Shea, E.K.: Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 36, 413–434 (2007)

    Article  Google Scholar 

  36. Newman, J.R.S., Ghaemmaghami, S., Ihmels, J., Breslow, D.K., et al.: Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006)

    Article  Google Scholar 

  37. Okabe, S., Tauchi, T., Ohyashiki, K.: Characteristics of dasatinib- and imatinib-resitant chronic myelogenous leukemia cells. Clin. Cancer Res. 14, 6181–6186 (2008)

    Article  Google Scholar 

  38. Orrell, D., Bolouri, H.: Control of internal and external noise in genetic regulatory networks. J. Theor. Biol. 230, 301–312 (2004)

    Article  MathSciNet  Google Scholar 

  39. Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D., et al.: Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002)

    Article  Google Scholar 

  40. Paulsson, J.: Noise in a minimal regulatory network: plasmid copy number control. Quart. Rev. Biophys. 34, 1–59 (2001)

    Google Scholar 

  41. Paulsson, J.: Summing up the noise in gene networks. Nature 427, 415–418 (2004)

    Article  Google Scholar 

  42. Pedraza, J.M., van Oudenaarden, A.: Noise propagation in gene networks. Science 307, 1965–1969 (2005)

    Article  Google Scholar 

  43. Perkins, T.J., Swain, P.S.: Strategies for cellular decision-making. Molec. Syst. Biol. (2009), doi:10.1038/msb.2009.83

    Google Scholar 

  44. Raj, A., van Oudenaarden, A.: Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell (2008), doi:10.1016/j.cell.2008.09.050

    Google Scholar 

  45. Raser, J.M., O’Shea, E.K.: Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004)

    Article  Google Scholar 

  46. Raser, J.M., O’Shea, E.K.: Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005)

    Article  Google Scholar 

  47. Ribeiro, A.S., Zhu, R., Kauffman, S.A.: A General Modeling Strategy for Gene Regulatory Networks with Stochastic Dynamics. J. Comput. Biol. 13, 1630–1639 (2006)

    Article  MathSciNet  Google Scholar 

  48. Rosenfeld, N., Elowitz, M.B., Alon, U.: Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002)

    Article  Google Scholar 

  49. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S., Elowitz, M.B.: Gene regulation at the single-cell level. Science 307, 1962–1965 (2005)

    Article  Google Scholar 

  50. Roussel, M., Zhu, R.: Validation of an algorithm for the delay stochastic simulation of transcription and translation in prokaryotic gene expression. Phys. Biol. 3, 274–284 (2006)

    Article  Google Scholar 

  51. Samoilov, M.S., Price, G., Arkin, A.P.: From fluctuations to Phenotypes: The Physiology of Noise. Sci. STKE 366, 17 (2006)

    Google Scholar 

  52. Savageau, M.A.: Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252, 546–549 (1974)

    Article  Google Scholar 

  53. Scott, M., Ingalls, B., Kaern, M.: Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks. Chaos 16 026107-1–026107-15 (2006)

    Google Scholar 

  54. Simpson, M.L., Cox, C.D., Sayler, G.S.: Frequency domain analysis of noise in autoregulated gene circuits. PNAS 100, 4551–4556 (2003)

    Article  Google Scholar 

  55. Smits, W.K., Kuipers, O.P., Veening, J.W.: Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4, 259–271 (2006)

    Article  Google Scholar 

  56. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99, 12795–12800 (2002)

    Article  Google Scholar 

  57. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. PNAS 98, 8614–8619 (2001)

    Article  Google Scholar 

  58. Thattai, M., van Oudenaarden, A.: Stochastic Gene Expression in Fluctuating Environments. Genetics 167, 523–530 (2004)

    Article  Google Scholar 

  59. Thattai, M., van Oudenaarden, A.: Attenuation of noise in ultrasensitive signaling cascades. Biophys. J. 82, 2943–2950 (2002)

    Article  Google Scholar 

  60. Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Comput. Biol. Chem. 28, 165–178 (2004)

    Article  MATH  Google Scholar 

  61. Veening, J.W., Smits, W.K., Kuipers, O.P.: Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008)

    Article  Google Scholar 

  62. Volfson, D., Marciniak, J., Blake, W.J., Ostroff, N., et al.: Origins of extrinsic variability in eukaryotic gene expression. Nature 439, 861–864 (2006)

    Article  Google Scholar 

  63. Wei, Y., Hardling, M., Olsson, B., Hezaveh, R., et al.: Not all imatinib resistance in CML are BCR-ABL kinase domain mutations. Ann. Hematol. 85, 841–847 (2006)

    Article  Google Scholar 

  64. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman and Hall, Boca Raton (2006)

    MATH  Google Scholar 

  65. Zhuravel, D., Fraser, D., St-Pierre, S., Tepliakova, L., Pang, W.L., Hasty, J., Kaern, M.: Phenotypic impact of regulatory noise in cellular stress-response pathways. Syst. Synth. Biol. (2010), doi:10.1007/s11693-010-9055-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charlebois, D.A., Perkins, T.J., Kaern, M. (2011). Stochastic Gene Expression and the Processing and Propagation of Noisy Signals in Genetic Networks. In: Niiranen, S., Ribeiro, A. (eds) Information Processing and Biological Systems. Intelligent Systems Reference Library, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19621-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19621-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19620-1

  • Online ISBN: 978-3-642-19621-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics