Skip to main content

Near-Threshold Computing of ECRL Circuits for Ultralow-Power Applications

  • Conference paper
Advanced Electrical and Electronics Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 87))

  • 3222 Accesses

Abstract

Ultralow-power design has been a main challenge in modern VLSI circuits. This paper explores the near-threshold computing of adiabatic circuits. The characteristic of energy dissipations of the ECRL (efficient charge recovery logic) circuits is analyzed. It is found that its energy consumption is dependent linearly on operating voltage. In the near-threshold region, the ECRL circuits obtain considerable energy savings with a little performance penalty. An 8-bit ECRL Kogge-Stone adder is realized and simulated using HSPICE at a 45nm process with the NCSU PTM model. Simulations show that the power consumption of the near-threshold ECRL Kogge-Stone adder is reduced about 50% compared with the super-threshold one for clock rates ranging from 50MHz to 1.0 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul, B.C., Agarwal, A., Roy, K.: Low-Power Design Techniques for Scaled Technologies. Integration, the VLSI Journal 39(2), 64–89 (2006)

    Article  Google Scholar 

  2. Soeleman, H., Roy, K.: Ultra-low Power Digital Sub-threshold Logic Circuits. In: Proc. Int. Symp. Low Power Electron. Design, pp. 94–96 (1999)

    Google Scholar 

  3. Calhoun, B.H., Chandrakasan, A.P.: Characterizing and Modeling Minimum Energy Operation for Subthreshold Circuits. In: Proc. Int. Symp. Low Power Electron. Design, pp. 90–95 (2004)

    Google Scholar 

  4. Hanson, S., Seok, M., Sylvester, D., Blaauw, D.: Nanometer Device Scaling in Sub-threshold Logic and SRAM. IEEE Trans. Electron Devices 55(1), 175–185 (2008)

    Article  Google Scholar 

  5. Kim, T.-H., Liu, J., Keane, J., Kim, C.H.: Circuit Techniques for Ultra-low Power Sub-threshold SRAMs. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 2574–2577 (2008)

    Google Scholar 

  6. Verma, N., Kwong, J., Chandrakasan, A.P.: Nanometer MOSFET Variation in Minimum Energy Subthreshold Circuits. IEEE Trans. Electron Devices 55(1), 163–173 (2008)

    Article  Google Scholar 

  7. Dreslinski, R.G., Wieckowski, M., Blaauw, D., Sylvester, D., Mudge, T.: Near-Threshold Computing: Reclaiming Moore’s Law Through Energy Efficient Integrated Circuits. Proceedings of the IEEE 98(2), 253–266 (2010)

    Article  Google Scholar 

  8. Moon, Y., Jeong, D.K.: An Efficient Charge Recovery Logic Circuit. IEEE Journal of Solid-State Circuits 31(4), 514–522 (1996)

    Article  Google Scholar 

  9. Kogge, P.M., Stone, H.S.: A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations. IEEE Transactions on Computers C-22(8), 786–793 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Y., Chen, J., Hu, J. (2011). Near-Threshold Computing of ECRL Circuits for Ultralow-Power Applications. In: Lee, J. (eds) Advanced Electrical and Electronics Engineering. Lecture Notes in Electrical Engineering, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19712-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19712-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19711-6

  • Online ISBN: 978-3-642-19712-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics