Skip to main content

Abstract

A model describing the growth of necrotic tumors in different regimes of vascularisation is studied. The tumor consists of a necrotic core of death cells and a surrounding shell which contains life-proliferating cells. The blood supply provides the nonnecrotic region with nutrients and no inhibitor chemical species are present. The corresponding mathematical formulation is a moving boundary problem since both boundaries delimiting the nonnecrotic shell are allowed to evolve in time. We determine all radially symmetric stationary solutions and reduce the moving boundary problem into a nonlinear evolution equation for the functions parameterising the boundaries of the shell. Parabolic theory provides a suitable context for proving local well-posedness of the problem for small initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, H.: Linear and Quasilinear Parabolic Problems, vol. I. Birkhäuser, Basel (1995)

    MATH  Google Scholar 

  2. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Elsevier Academic Press, Amsterdam (2005)

    MATH  Google Scholar 

  3. Borisovich, A., Friedman, A.: Symmetric-breaking bifurcation for free boundary problems. Indiana Univ. Math. J. 54, 927–947 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrne, H.M., Chaplain, M.A.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130, 151–181 (1995)

    Article  MATH  Google Scholar 

  5. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. Journal of Mathematical Biology 46, 191–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, S.B.: Analysis of a free boundary problem modeling tumor growth. Acta Math. Sin (Engl. Ser.) 21(5), 1071–1082 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cui, S.B., Escher, J.: Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors. SIAM J. Math. Anal. 39(1), 210–235 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cui, S.B., Escher, J.: Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth. Comm. Part. Diff. Eq. 33(4), 636–655 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, S.B., Escher, J., Zhou, F.: Bifurcation for a free boundary problem with surface tension modelling the growth of multi-layer tumors. J. Math. Anal. Appl. 337(1), 443–457 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, S.B., Friedman, A.: Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255, 636–677 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Da Prato, G., Grisvard, P.: Equations d’évolution abstraites nonlinéaires de type parabolique. Ann. Mat. Pura Appl. 120, 329–336 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escher, J., Matioc, A.-V.: Radially symmetric growth of nonnecrotic tumors. Nonlinear Differ. Equ. Appl. 17, 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Escher, J., Matioc, A.-V.: Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. In: Discrete and Continuous Dynamical System – B (2010) (to appear)

    Google Scholar 

  14. Escher, J., Matioc, B.-V.: A moving boundary problem for periodic Stokesian Hele–Shaw flows. Interfaces Free Bound 11, 119–137 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedman, A., Reitich, F.: Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38, 262–284 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, T.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1998)

    Google Scholar 

  17. Greenspan, H.P.: On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242 (1976)

    Article  MathSciNet  Google Scholar 

  18. Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. LI 4, 317–340 (1972)

    Google Scholar 

  19. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Escher, J., Matioc, AV., Matioc, BV. (2011). Analysis of a Mathematical Model Describing Necrotic Tumor Growth. In: Stephan, E., Wriggers, P. (eds) Modelling, Simulation and Software Concepts for Scientific-Technological Problems. Lecture Notes in Applied and Computational Mechanics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20490-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20490-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20489-0

  • Online ISBN: 978-3-642-20490-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics