Skip to main content

Vitality, Injury Age, Determination of Skin Wound Age, and Fracture Age

  • Chapter
  • First Online:
Forensic Histopathology

Abstract

The determination of vitality, i.e., whether an injury was incurred during life, and age of an internal injury or skin wound is a fundamental issue in forensic medicine (Cecchi 2010; Kondo and Ishida 2010; Grellner et al. 1997, 2000, 2005; Dreßler et al. 2001, 1999a, 1997; Wyler 1996; Lorente 1996; Kondo and Oshima 1996b; Betz 1995a, b, Betz et al. 1995, 1993e, 1992c, 1992a; Fechner et al. 1991; Oehmichen et al. 1989; Raekallio 1980a, 1980b, 1970, 1965a; Lindner 1962, 1967, 1980; (Berg and Bonte 1971; Lindner and Huber 1973). This examination includes the comparison of injuries incurred while alive with postmortem injuries (Vieira 1996; Oehmichen and Kirchner 1996; Oehmichen 1990a; Oehmichen and Cröpelin 1995; Oehmichen et al. 1988a, b, Naeve and Bause 1974), while epidermal esterase activity following blunt force trauma has been previously investigated (Pioch 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Sugisaki K, Dannenberg AM Jr (1996) Rabbit vascular endothelial adhesion molecules: ELAM 1 is most elevated in acute inflammation, whereas VCAM-1 and ICAM-1 predominate in chronic inflammation. J Leukoc Biol 60:692–703

    PubMed  CAS  Google Scholar 

  • Amberg R (1996) Time-dependent cytokine expression in cutaneous wound repair. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 107–121

    Google Scholar 

  • Amon U, Gibbs BF, Wolff HH (1996) Mast cells: mediators and aspects of wound healing. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 173–202

    Google Scholar 

  • Bacci S, Romagnoli P, Norelli GA, Forestieri AL, Bonelli A (2006) Early increase in TNF-alpha-containing mast cells in skin lesions. Int J Leg Med 120:138–142

    CAS  Google Scholar 

  • Bai R, Wan L, Shi M (2008) The time-dependent expressions of IL-1β, COX-2, MCP-1 mRNA in skin wounds of rabbits. Forensic Sci Int 175:193–197

    PubMed  CAS  Google Scholar 

  • Beneke G (1972) Altersbestimmung von Verletzungen innerer Organe. Z Rechtsmed 71:1–16

    PubMed  CAS  Google Scholar 

  • Berg S (1972) The timing of skin wounds. Z Rechtsmed 70:121–135

    PubMed  CAS  Google Scholar 

  • Berg S (1975) Vitale Reaktionen und Zeitschätzungen. In: Mueller B (ed) Gerichtliche Medizin, vol Bd. 1. Springer, Berlin, Heidelberg, New York, pp 327–340

    Google Scholar 

  • Berg S, Bonte W (1971) Praktische Erfahrungen mit der biochemischen Wundaltersbestimmung. Beitr Gerichtl Med 28:108–114

    Google Scholar 

  • Berg S, Elbel R (1969) Altersbestimmung subcutaner Blutungen. Münch Med Wochen 111:1185–1190

    CAS  Google Scholar 

  • Berg S, Ditt J, Friedrich D, Bonte W (1968) Möglichkeiten der biochemischen Wundaltersbestimmung. Dtsch Z Gerichtl Med 63:183–198

    CAS  Google Scholar 

  • Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Leg Med 107:60–68

    CAS  Google Scholar 

  • Betz P (1995a) Forensische Altersbestimmung menschlicher Hautwunden. In: Bratzke H, Schröter A (eds) Immunhis­tochemie in der Rechtsmedizin. Hänsel-Hohenhausen, Egelsbach, Frankfurt, Washington, pp 37–100

    Google Scholar 

  • Betz P (1995b) Immunohistochemical parameters for the age estimation of human skin wounds. Am J Forensic Med Pathol 16:203–209

    PubMed  CAS  Google Scholar 

  • Betz P (1996a) Collagen subtypes – markers for the healing of skin wounds. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 247–256

    Google Scholar 

  • Betz P (1996b) Neue Methoden zur histologischen Altersbesti­mmung menschlicher Hautwunden. Schmidt-Römhild, Lübeck

    Google Scholar 

  • Betz P, Eisenmenger W (1996) Morphometrical analysis of hemosiderin deposits in relation to wound age. Int J Leg Med 108:262–264

    CAS  Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tubel J, Wiest I, Penning R et al (1992a) The time-dependent rearrangement of the epithelial basement membrane in human skin wounds – immunohistochemical localization of collagen IV and VII. Int J Leg Med 105:93–97

    CAS  Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tubel J, Wiest I, Penning R et al (1992b) Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds. Int J Leg Med 195:21–26

    Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1992c) Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds. Int J Leg Med 105:99–103

    CAS  Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, Eisenmenger W (1992d) Time-dependent pericellular expression of collagen type IV, laminin, and heparin sulfate proteoglycan in myofibroblasts. Int J Leg Med 105:169–172

    CAS  Google Scholar 

  • Betz P, Nerlich A, Tübel J, Penning R, Eisenmenger W (1993a) Localization of tenascin in human skin wounds – an immunohistochemical study. Int J Leg Med 105:325–328

    CAS  Google Scholar 

  • Betz P, Nerlich A, Tübel J, Penning R, Eisenmenger W (1993b) The time-dependent expression of keratins 5 and 13 during the reepithelialization of human skin wounds. Int J Leg Med 105:229–232

    CAS  Google Scholar 

  • Betz P, Nerlich A, Wilke J, Tubel J, Penning R, Eisenmenger W (1993c) Analysis of the immunohistochemical localization of collagen type III and V for the time-estimation of human skin wounds. Int J Leg Med 105:329–332

    CAS  Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tubel J, Penning R, Eisenmenger W (1993d) Immunohistochemical localization of collagen types I and VI in human skin wounds. Int J Leg Med 106:31–34

    CAS  Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tubel J, Penning R, Eisenmenger W (1993e) The immunohistochemical analysis of fibronectin, collagen type III, laminin, and cytokeratin 5 in putrified skin. Forensic Sci Int 61:35–42

    PubMed  CAS  Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993f) The immunohistochemical localization of alpha1-antichymotrypsin and fibronectin and its meaning for the determination of the vitality of human skin wounds. Int J Leg Med 105:223–227

    CAS  Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993g) Immunohistochemical localization of collagen types I and VI in human skin wounds. Int J Leg Med 106:31–34

    CAS  Google Scholar 

  • Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993h) The time-dependent localization of Ki-67 antigen positive cells in human skin wounds. Int J Leg Med 106:35–40

    CAS  Google Scholar 

  • Betz P, Tübel J, Eisenmenger W (1995) Immunohistochemical analysis of markers for different macrophage phenotypes and their use for a forensic wound age estimation. Int J Leg Med 107:197–200

    CAS  Google Scholar 

  • Blitstein-Willinger E (1991) The role of growth factors in wound healing. Skin Pharmacol 4:175–182

    PubMed  CAS  Google Scholar 

  • Bode G, Garbe G, Stöckigt W, Förster B (1979) Der Einfluss von Schlafmitteln auf die Entwicklung der morphologischen und biochemischen Wundreaktion. Z Rechtsmed 82:337–347

    PubMed  CAS  Google Scholar 

  • Bode G, Garbe G, Ick D (1980) Der Einffluss von Kälte bzw. Tod durch Erfrieren auf die frühen Wundheilungsvorgänge an Hautschnitten. Beitr Gerichtl Med 38:119–124

    PubMed  CAS  Google Scholar 

  • Castagnoli C, Stella M, Magliacani G, Ferrone S, Momigliano Richiardi P (1994) Similar ectopic expression of ICAM-1 and HLA-class II molecules in hypertrophic scars following thermal injury. Burns 20:430–433

    PubMed  CAS  Google Scholar 

  • Cecchi R (2010) Estimating wound age: looking into the future. Int J Leg Med 124:523–536

    Google Scholar 

  • Dachum W, Jiazhen Z (1992) Localization and quantification of the non-specific esterase in injured skin for timing of wounds. Forensic Sci Int 53:203–213

    Google Scholar 

  • Dreßler J, Bachmann L, Kasper M, Hauck JG, Müller E (1997a) Time dependence of the expression of ICAM-1 (CD 54) in human skin wounds. Int J Leg Med 110:299–304

    Google Scholar 

  • Dreßler J, Bachmann L, Müller E (1997b) Enhanced expression of ICAM-1 (CD54) in human skin wounds: diagnostic value in legal medicine. Inflamm Res 46:434–435

    PubMed  Google Scholar 

  • Dreßler J, Bachmann L, Koch R, Müller E (1999a) Enhanced expression of selectins in human skin wounds. Int J Leg Med 112:39–44

    Google Scholar 

  • Dreßler J, Bachmann L, Koch R, Müller E (1999b) Estimation of wound age and VCAM-1 in human skin. Int J Leg Med 112:159–162

    Google Scholar 

  • Dreßler J, Busuttil A, Koch R, Harrison DJ (2001) Sequence of melanocyte migration into human scar tissue. Int J Leg Med 115:61–63

    Google Scholar 

  • Dürwald W (1987)Gerichtliche Medizin. 3rd Edition, J.A.Barth, Leipzig, Germany, p 87

    Google Scholar 

  • Eisenmenger W, Nerlich A, Glück D (1988) Die Bedeutung des Kollagens bei der Wundaltersbestimmung. Z Rechtsmed 100:79–100

    PubMed  CAS  Google Scholar 

  • Fechner G (1991) Zum Vitalitatsbeweis von Sklelettschäden. Habilitationsschrift, Universität Münster

    Google Scholar 

  • Fechner G (1995) Immunhistochemische Untersuchungen bei Muskeltraumen. In: Bratzke H, Schröter A (eds) Immunhis­tochemie in der Rechtsmedizin. Hänsel-Hohenhausen, Egelbach, Frankfurt, Washington, pp 22–36

    Google Scholar 

  • Fechner G, Petkovits T, Brinkmann B (1990) Zur Ultrastruk­tur-Pathologie mechanischer Skelettmuskelschädigungen. Z Rechtsmed 103:291–299

    PubMed  CAS  Google Scholar 

  • Fechner G, Hauser R, Sepulchre MA, Brinkmann B (1991) Immunhistochemical investigations to demonstrate vital direct traumatic damage of skeletal muscle. Int J Leg Med 104:215–219

    CAS  Google Scholar 

  • Fieguth A, Kleemann WJ, Tröger HD (1994) Immunohis­tochemical examination of skin wounds with antibodies against alpha-1 chymotrypsin, alpha-2-macroglobulin and lysozyme. Int J Leg Med 107:29–33

    CAS  Google Scholar 

  • Fieguth A, Feldbrügge H, Gerich T, Kleemann WJ, Tröger HD (2003) The time-dependent expression of fibronectin, MRP8, MRP14 and defensin in surgically treated human skin wounds. Forensic Sci Int 131:156–161

    PubMed  CAS  Google Scholar 

  • Flad HD (1996) Chemokines and proinflammatory cytokines in wound healing. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 49–57

    Google Scholar 

  • Friebel L, Woohsmann H (1968) Die Altersbestimmung von Kanüleneinstichen mittels enzymhistochemischer Methoden. Dtsch Z gerichtl Med 62:252–260

    CAS  Google Scholar 

  • Fries JWU, Williams AJ, Atkins RC, Newman W, Lipscomb MF, Collins T (1993) Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am J Pathol 143:725–737

    PubMed  CAS  Google Scholar 

  • Grellner W (2002) Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Forensic Sci Int 130:90–96

    PubMed  CAS  Google Scholar 

  • Grellner W, Ester-Bode T, Köhler L, Staak M (1997) Zur Rolle von Adhäsionsmolekülen für die frühe Wundaltersschätzung. 6. Frühjahrstagung – Region Nord – der Deutschen Gesellschaft für Rechtsmedizin. Berlin, 23. und 24. Mai 1997

    Google Scholar 

  • Grellner W, Dimmeler S, Madea B (1998) Immunohistochemical detection of fibronectin in post-mortem incised wounds of porcine skin. Forensic Sci Int 97:109–116

    PubMed  CAS  Google Scholar 

  • Grellner W, Georg T, Wilske J (2000) Quantitative analysis of proinflammatory cytokines (IL-1β, Il.6, TNF-α) in human skin wounds. Forensic Sci Int 113:251–264

    PubMed  CAS  Google Scholar 

  • Grellner W, Vieler S, Madea B (2005) Transforming growth factors (TGF-α and TGF-β1) in the determination of vitality and wound age: immunohistochemical study on human skin wounds. Forensic Sci Int 153:174–180

    PubMed  CAS  Google Scholar 

  • Hausmann R, Nerlich A, Betz P (1998) The time-related expression of p53 protein in human skin wounds – a quantitative immunohistochemical analysis. Int J Leg Med 111:169–172

    CAS  Google Scholar 

  • Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Leg Med 118:320–325

    Google Scholar 

  • Helpap B (1987) Leitfaden der allgemeinen Entzündungslehre. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Helpap B, Cremer H (1972) Zellkinetische Untersuchungen zur Wundheilung der Mäuseleber. Virchows Arch B 10:134–144

    CAS  Google Scholar 

  • Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Leg Med 123:299–304

    Google Scholar 

  • Janssen W (1977) Forensische Histologie. Schmidt-Römhild, Lübeck

    Google Scholar 

  • Joseph-Silverstein J, Rifkin DB (1990) Endothelial cell growth factors and the vessel wall. In: Oehmichen M (ed) Die Wundheilung. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Kekow J, Gross WL (1996) Role of TGFβ in wound healing. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 59–68

    Google Scholar 

  • Klotzbach H, Delling G, Richter E, Sperhake J, Püschel K (2003) Post-mortem diagnosis and age estimation of infant`s fractures. Int J Leg Med 117:82–89

    CAS  Google Scholar 

  • Kondo T (2007) Timing of skin wounds. Leg Med 9:109–114

    Google Scholar 

  • Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203:93–98

    PubMed  CAS  Google Scholar 

  • Kondo T, Ohshima T (1996a) Experimental study on the estimation of skin wound age after injury by immunostaining interleukin 1a, collagen type I and fibronectin. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 123–132

    Google Scholar 

  • Kondo T, Ohshima T (1996b) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Leg Med 108:231–236

    CAS  Google Scholar 

  • Kondo T, Tanaka J, Ishida Y, Mori R, Tykayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds an its application to forensic wound age determination. Int J Leg Med 116:267–272

    CAS  Google Scholar 

  • Leibovich SJ, Wiseman DM (1988) Macrophages, wound repair and angiogenesis. In: Growth factors and other aspects of wound healing: biological and clinical implications. Alan R Liss Inc, New York, pp 131–145

    Google Scholar 

  • Lindner J (1962) Die Morphologie der Wundheilung. Langen­becks Arch Chir 301:39–70

    Google Scholar 

  • Lindner J (1967) Vitale Reaktionen. Dtsch Z Gerichtl Med 59:312–344

    CAS  Google Scholar 

  • Lindner J (1980) Morphologie und Biochemie der Wundheilung. Langenbecks Arch Chir 358:153–160

    Google Scholar 

  • Lindner J, Huber P (1973) Biochemische und morphologische Grundlagen der Wundheilung und ihre Beeinflussung. Med Welt 24:897–911

    PubMed  CAS  Google Scholar 

  • Lorente JA (1996) Cathepsin D as a marker of the vitality of the wounds. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 69–81

    Google Scholar 

  • MacGregor RR, Safford M, Salit M (1988) Effect of ethanol on function required for delivery of neutrophils to sites of inflammation. J Infect Dis 157:682–689

    PubMed  CAS  Google Scholar 

  • Mackie EJ, Halfter W, Liverani D (1988) Induction of tenascin in healing wounds. J Cell Biol 107:2757–2767

    PubMed  CAS  Google Scholar 

  • Mann M, Bednar B (1977) Influence of age and different drugs on the healing process in human skin wounds. Gerontology 23:277–289

    PubMed  CAS  Google Scholar 

  • Martin P (1997) Wound healing – aiming for perfect skin regeneration. Science 276:75–81

    PubMed  CAS  Google Scholar 

  • Mauch C, Oono T, Eckes B, Krieg T (1994) Cytokines and wound healing. In: Luger TA, Schwarz T (eds) Epidermal growth factors and cytokines. M. Dekker, New York, pp 325–344

    Google Scholar 

  • Maxeiner H (1987) Zur lokalen Vitalreaktion nach Angriff gegen den Hals. Z Rechtsmed 99:35–54

    PubMed  CAS  Google Scholar 

  • Maxeiner H (1994) Zur lokalen Vitalreaktion bei Unterkühlung. Rechtsmed 4:80–84

    Google Scholar 

  • McKay IA, Leigh IM (1991) Epidermal cytokines and their role in cutaneous wound healing. Br J Dermatol 124:513–518

    PubMed  CAS  Google Scholar 

  • Müller PK, Brinckmann J (1996) Collagen and wound healing – a summary. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 243–246

    Google Scholar 

  • Mulligan MS, Till GO, Smith CW, Anderson DC, Miyasaka M, Tamatani T, Todd RF, Issekutz TB, Ward PA (1994) Role of leucocyte adhesion molecules in lung and dermal vascular injury after thermal trauma of skin. Am J Pathol 144:1008–1015

    PubMed  CAS  Google Scholar 

  • Murakami R, Yamaoka I, Sakakura T (1989) Appearance of tenascin in healing skin of the mouse: possible involvement in seaming of wounded tissue. Int J Dev Biol 33:439–444

    PubMed  CAS  Google Scholar 

  • Naeve W, Bause HW (1974) Experimentelle postmortale Kopf- und Hirnverletzungen. Z Rechtsmed 74:187

    PubMed  CAS  Google Scholar 

  • Nakajima T, Hayakawa M, Yajima D, Motani-Saitoh H, Sato Y, Kiuchi M, Ichinose M, Iwase H (2006) Time-course changes in the expression of heme oxygenase-1 in human subcutaneous hemorrhage. Forensic Sci Int 158:157–163

    PubMed  CAS  Google Scholar 

  • Nerlich ML, Bosch U (1988) Wunde und Wundbehandlung. Tetanusprophylaxe. Orthopade 17:11–16

    PubMed  CAS  Google Scholar 

  • Ninggou L, Yijiu C, Xiaohua H (2006) Fibronectin EIIIA splicing variant: a useful contribution to forensic wounding interval estimation. Forensic Sci Int 162:178–182

    Google Scholar 

  • Oehmichen M (1984) Blutabbau in den Lungenalveolen: Zeichen der Vitalität und Bestimmung der Überlebenszeit. Z Rechtsmed 92:47–57

    PubMed  CAS  Google Scholar 

  • Oehmichen M (1990a) Die Wundheilung. Springer, Heidelberg, Berlin, New York

    Google Scholar 

  • Oehmichen M (1990b) Theorie und Praxis der Chronomorphologie von Verletzungen in der forensischen Pathologie. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Oehmichen M, Cröpelin A (1995) Temporal course of intravital and post-mortem proliferation of epidermis cells after injury – an immunohistochemical study using bromodeoxyuridine in rats. Int J Leg Med 107:257–262

    CAS  Google Scholar 

  • Oehmichen M, Kirchner H (eds) (1996) The wound healing ­process – forensic pathological aspects. Res Leg Med Vol 13. Schmidt-Römhild, Lübeck

    Google Scholar 

  • Oehmichen M, Raff G (1980) Timing of cortical contusion. Correlation between histomorphologic alterations and post-traumatic interval. Z Rechtsmed 84:79–94

    PubMed  CAS  Google Scholar 

  • Oehmichen M, Karres-Balting U, Saternus KS (1987) Reaktive Veränderungen bei Weichteilunterblutungen im Kehlkop­finneren. Beir Gerichtl Med 45:73–78

    CAS  Google Scholar 

  • Oehmichen M, Frasunek J, Zilles K (1988a) Cytokinetics of epidermal cells in skin from human cadavers: I. Dependency on sex, age and site. Z Rechtsmed 101:161–171

    PubMed  CAS  Google Scholar 

  • Oehmichen M, Frasunek J, Zilles K (1988b) Cytokinetics of epidermal cells in skin from human cadavers: II. Dependency on sex, age and site. Z Rechtsmed 101:173–182

    PubMed  CAS  Google Scholar 

  • Oehmichen M, Schmidt V, Stuka K (1989) Freisetzung von Proteinase-Inhibitoren als vitale Reaktion im frühen posttraumatischen Intervall. Z Rechtsmed 102:461–472

    PubMed  CAS  Google Scholar 

  • Oehmichen M, Gronki T, Meissner C, Anlauf M, Schwark T (2009) Mast cell reactivity at the margin of human skin wounds: an early cell marker of wound survival? Forensic Sci Int 191:1–5

    PubMed  CAS  Google Scholar 

  • Ogbuihi S, Müller Z, Zink P (1988) Quantitative polarizing microscopy for the evaluation of collagen types I and III in paraffin-embedded sections. Z Rechtsmed 100:101–111

    PubMed  CAS  Google Scholar 

  • Ordmann LJ, Gillmann T (1966) Studies in the healing of cutaneous wounds. I. The healing of incisions through the skin of pigs. Arch Surg 93:857–882

    Google Scholar 

  • Ortonne JP, Löning T, Schmitt D, Thivolet J (1981) Immunomorphological and ultrastructural aspects of keratinocyte migration in epidermal wound healing. Virchows Arch A 392:217–230

    CAS  Google Scholar 

  • Pierce GF, Yanagihara D, Kopchin K et al (1994) Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor. J Exp Med 179:831–840

    PubMed  CAS  Google Scholar 

  • Pioch W (1969) Epidermale Esterase-Aktivität als Beweis der vitalen Einwirkung von stumpfer Gewalt. Beitr Gerichtl Med 25:136–145

    PubMed  CAS  Google Scholar 

  • Püschel K, Schulz-Schaeffer WJ, Brück M (1996) Time-dependent morphological alterations of injection marks. In: Oehmichen M, Kirchner H (eds) The wound healing pro­cess – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 293–307

    Google Scholar 

  • Radzun HJ (1996) Pathology of wound healing and repair. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 35–39

    Google Scholar 

  • Raekallio J (1960) Enzymes histochemically demonstrable in the earliest phase of wound healing. Nature 188:234–235

    PubMed  CAS  Google Scholar 

  • Raekallio J (1964) Histochemical distinction between ante­mortem and postmortem skin wounds. J Forensic Sci 9:107–118

    PubMed  CAS  Google Scholar 

  • Raekallio J (1965a) Die Altersbestimmung mechanisch bedingter Hautwunden mit enzymhistochemischen Methoden. Schmidt-Römhild, Lübeck

    Google Scholar 

  • Raekallio J (1965b) Histochemical demonstration of enzymatic response to injure in experimental skin wounds. Exp Mol Pathol 4:303–310

    CAS  Google Scholar 

  • Raekallio J (1970) Enzyme histochemistry of wound healing. Fischer, Stuttgart

    Google Scholar 

  • Raekallio J (1972) Determination of the age of wounds by histochemical and biochemical methods. Forensic Sci 1:3–16

    PubMed  CAS  Google Scholar 

  • Raekallio J (1973) Estimation of the age of injuries by histochemical and biochemical methods. Z Rechtsmed 73:83–102

    PubMed  CAS  Google Scholar 

  • Raekallio J (1976) Timing of wounds in forensic medicine. Jpn J Legal Med 30:125–136

    CAS  Google Scholar 

  • Raekallio J (1980a) Histological estimation of the age of injuries. In: Perper JA, Wecht CH (eds) Microscopic diagnosis in forensic pathology. Thomas, Springfield, pp 3–16

    Google Scholar 

  • Raekallio J (1980b) Histological and biochemical estimation of the age of injuries. In: Perper JA, Wecht CH (eds) Microscopic diagnosis in forensic pathology. Thomas, Springfield, pp 17–35

    Google Scholar 

  • Raekallio J, Mäkinen PL (1967) Biochemical and histochemical observations on aminopeptidase activity in early wound healing. Nature 213:1037–1038

    CAS  Google Scholar 

  • Raekallio J, Mäkinen PL (1974) The effect of ageing on enzyme histochemical vital reactions. Z Rechtsmed 75:105–111

    PubMed  CAS  Google Scholar 

  • Ross R (1968) The fibroblast and wound repair. Biol Rev 43:51–96

    PubMed  CAS  Google Scholar 

  • Schaeffer-Schulz WJ, Brück W, Püschel K (1996) Macrophage subtyping in the determination of age of injection sites. Int J Leg Med 109:29–33

    Google Scholar 

  • Schollmeyer W (1965) Über die Altersbestimmung von Injektionsstichen. Beitr Gerichtl Med 23:244–249

    PubMed  CAS  Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    PubMed  CAS  Google Scholar 

  • ten Dijke P, Iwata KK (1989) Growth factors for wound healing. Biotechnology 7:793–798

    Google Scholar 

  • Thomsen H (1996) Platelets and wound healing – a review. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 151–172

    Google Scholar 

  • Tutsch-Bauer E, Baur C, Tröger HD, Liebhardt E (1981) Untersuchungen zur Altersbestimmung an künstlich gesetzten Hämatomen. Beitr Gerichtl Med 39:83–86

    PubMed  CAS  Google Scholar 

  • Vieira DN (1996) Application of ions, proteinase, inhibitors and PGF2a in the differential diagnosis between vital and post-mortem skin wounds. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 83–105

    Google Scholar 

  • Walcher K (1936) Die vitale Reaktion bei der Beurteilung des gewaltsamen Todes. Dtsch Z Ges Gerichtl Med 26:193–211

    Google Scholar 

  • Weber MA, Risdon RA, Offiah AC, Malone M, Sebire NJ (2009) Rib fractures identified at post-mortem examination in sudden unexpected death in infancy (SUDI). Forensic Sci Int 189:75–81

    PubMed  Google Scholar 

  • Willems IEMG, Arends JW, Daemen MJAT (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179:321–325

    PubMed  CAS  Google Scholar 

  • Wyler D (1996) Determining the age and assessing the vitality of wounds by immunohistochemical detection of cell adhesion molecules. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, vol 13, Research in legal medicine. Schmidt-Römhild, Lübeck, pp 133–138

    Google Scholar 

  • Yu TS, Cheng ZH, Li LQ, Zhao R, Fan YY, Du Y, Ma WX, Guan DW (2010) The cannabinoid receptor type 2 is time-dependently expressed during skeletal muscle wound healing in rats. Int J Leg Med 124:397–404

    Google Scholar 

  • Zhao R, Guan DA, Zhang W, Du Y, Xiong CY, Zhu BL, Zhang JJ (2009) Increased expressions and activation of apoptosis-related factors in cell signaling during incised skin wound healing in mice: a preliminary study for forensic wound age estimation. Legal Medicine 11:S155–S160

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard B. Dettmeyer .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dettmeyer, R.B. (2011). Vitality, Injury Age, Determination of Skin Wound Age, and Fracture Age. In: Forensic Histopathology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20659-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20659-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20658-0

  • Online ISBN: 978-3-642-20659-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics