Skip to main content

The Round Complexity of Perfectly Secure General VSS

  • Conference paper
Information Theoretic Security (ICITS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6673))

Included in the following conference series:

Abstract

The round complexity of verifiable secret sharing (VSS) schemes has been studied extensively for threshold adversaries. In particular, Fitzi et al. showed an efficient 3-round VSS for n ≥ 3t + 1 [4], where an infinitely powerful adversary can corrupt t (or less) parties out of n parties. This paper shows that for non-threshold adversaries:

  1. 1

    Two round perfectly secure VSS is possible if and only if the underlying adversary structure satisfies the \({\cal Q}^4\) condition;

  2. 2

    Three round perfectly secure VSS is possible if and only if the underlying adversary structure satisfies the \({\cal Q}^3\) condition.

Further as a special case of our three round protocol, we can obtain a more efficient 3-round VSS than the VSS of Fitzi et al. for n = 3t + 1. More precisely, the communication complexity of the reconstruction phase is reduced from \({\cal O}(n^3)\) to \({\cal O}(n^2)\). We finally point out a flaw in the reconstruction phase of the VSS of Fitzi et al., and show how to fix it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA, May 2-4, pp. 1–10. ACM Press, New York (1988)

    Google Scholar 

  2. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults (Extended Abstract). In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing, Providence, Rhode Island, USA, May 6-8, pp. 383–395. ACM Press, New York (1985)

    Google Scholar 

  3. Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Fitzi, M., Garay, J.A., Gollakota, S., Pandu Rangan, C., Srinathan, K.: Round-optimal and efficient verifiable secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The Round Complexity of Verifiable Secret Sharing and Secure Multicast. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, Heraklion, Crete, Greece, July 6-8, pp. 580–589. ACM Press, New York (2001)

    Google Scholar 

  6. Hirt, M., Maurer, U.M.: Complete Characterization of Adversaries Tolerable in Secure Multi-Party Computation. In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, Santa Barbara, California, USA, August 21-24, pp. 25–34. ACM Press, New York (1997)

    Chapter  Google Scholar 

  7. Katz, J., Koo, C.-Y., Kumaresan, R.: Improving the round complexity of VSS in point-to-point networks. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 499–510. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland Publishing Company, Amsterdam (1978)

    MATH  Google Scholar 

  9. Maurer, U.M.: Secure multi-party computation made simple. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choudhury, A., Kurosawa, K., Patra, A. (2011). The Round Complexity of Perfectly Secure General VSS. In: Fehr, S. (eds) Information Theoretic Security. ICITS 2011. Lecture Notes in Computer Science, vol 6673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20728-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20728-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20727-3

  • Online ISBN: 978-3-642-20728-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics