Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1868 Accesses

Summary

In this paper, the effect of the domain geometry on the local regularity/singularity properties of the solution to the trace of a multifractional pseudodifferential equation on a fractal domain is studied. The singularity spectrum of the Gaussian solution to this type of models is trivial due to regularity assumptions on the variable order of its fractional derivatives. The theory of reproducing kernel Hilbert spaces (RKHSs) and generalized random fields is applied in this study. Specifically, the associated family of RKHSs is isomorphically identified with the trace on a compact fractal domain of a multifractional Sobolev space. The fractal defect modifies the variable order of weak-sense factional derivatives of the functions in these spaces. In the Gaussian case, random fields on fractal domains having sample paths with variable local Hölder exponent are introduced in this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R.J.: The Geometry of Random Fields. Wiley, New York (1981)

    MATH  Google Scholar 

  2. Anh, V.V., Leonenko, N.N., Shieh, N.-R.: Multifractality of products geometric Ornstein-Uhlenbeck type processes. Adv. Appl. Prob. 40, 1129–1156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anh, V.V., Leonenko, N.N., Shieh, N.-R.: Multifractal scaling of products of birth-death processes. Bernoulli. 15, 508–531 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anh, V.V., Leonenko, N.N., Shieh, N.-R.: Multifractal products of stationary diffusion processes. Stoch. Anal. Appl. 27, 475–499 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ayache, A.: The generalized multifractional Brownian motion can be multifractal. Tech. Rep. LSP-2000-22, Laboratoire de Statistique et Probabilités, UMR C5583 Université Paul Sabatier (2000)

    Google Scholar 

  6. Ayache, A., Lévy-Véhel, J.: Generalized multifractional Brownian motion: Definition and preliminary results. In: Dekking, M., Lévy-Véhel, J., Lutton, E., Tricot, C. (eds.) Fractals: Theory and Applications in Engineering, pp. 17–32. Springer, Heidelberg (1999)

    Google Scholar 

  7. Bacry, E., Muzy, J.E.: Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236, 449–475 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barral, J., Mandelbrot, B.B.: Multifractal products of cylindrical pulses. Prob. Th Rel. Fields 124, 409–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benassi, A., Jaffard, S., Roux, D.: Elliptic Gaussian random processes. Rev. Mat. Iberoam 13, 19–90 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Benzi, R., Paladin, G., Parisi, G., Vulpiani, A.: On multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A - Math. Gen. 17, 3521–3531 (1984)

    Article  MathSciNet  Google Scholar 

  11. Boudafel, M.C., Lu, S., Molz, F.J., Lavallée, D.: Multifractal scaling of the intrinsic permeability. Water Resour. Res. 36, 3211–3222 (2000)

    Article  Google Scholar 

  12. Carl, B.: Entropy numbers of diagonal operators with an application to eigenvalue problems. J. Approx. Theory 32, 135–150 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Edmund, D., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  14. Falconer, K.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  15. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  16. Folorunso, O.A., Puente, C.E., Rolston, D.E., Pinzon, J.E.: Statistical and fractal evaluation of the spatial characteristics of soil surface strength. Soil Sci. Soc. Am. J. 58, 284–294 (1994)

    Article  Google Scholar 

  17. Frisch, U., Parisi, G.: On the singularity structure of fully developed turbulence. In: Ghil, M., Benzi, R., Parisi, G. (eds.) Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, pp. 84–87. North-Holland, New York (1985)

    Google Scholar 

  18. Giona, M., Roman, H.E.: Fractional diffusion equation on fractals: one-dimensional case and asymptotic behaviour. J. Phys. A - Math. Gen. 25, 2093 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grout, H., Tarquis, A.M., Wiesner, M.R.: Multifractal analysis of particle size distributions in soil. Environ. Sci. Technol. 32, 1176–1182 (1998)

    Article  Google Scholar 

  20. Harte, D.: Multifractals: Theory and Applications. Chapman & Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  21. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hentschel, H.G.E., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435–444 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jacob, N., Leopold, H.-G.: Pseudo-differential operators with variable order of differentiation generating Feller semigroups. Integr. Equat. Oper. Th. 17, 544–553 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jaffard, S.: Multifractal formalism for functions part I: results valid for all functions. SIAM J. Math. Anal. 28, 944–970 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jaffard, S.: Multifractal formalism for functions part II: self-similar functions. SIAM J. Math. Anal. 28, 971–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kikuchi, K., Negoro, A.: Pseudodifferential operators and Sobolev spaces of variable order of differentiation. Rep. Fac. Liberal Arts, Shizuoka University, Sciences 31, 19–27 (1995)

    Google Scholar 

  27. Kikuchi, K., Negoro, A.: On Markov process generated by pseudodifferential operator of variable order. Osaka J. Math. 34, 319–335 (1997)

    MATH  MathSciNet  Google Scholar 

  28. Kravchenko, A., Boast, C.W., Bullock, D.G.: Multifractal analysis of soil spatial variability. Agron. J. 91, 1033–1041 (1999)

    Article  Google Scholar 

  29. Kropp, J., Block, A., Bloh, W.V., Klenke, T., Schellnhuber, H.J.: Characteristic multifractal element distributions in recent bioactive marine sediments. In: Kruhl, J.H. (ed.) Fractals and Dynamic Systems in Geoscience. Springer, Berlin (1994)

    Google Scholar 

  30. Lau, K.S.: Iterated function systems with overlaps and multifractal structure. In: Kono, N., Shieh, N.R. (eds.) Trends in Probability and Related Analysis. World Scientific, River Edge (1999)

    Google Scholar 

  31. Lavallée, D., Lovejoy, S., Schertzer, D., Ladoy, P.: Nonlinear variability and landscape topography: analysis and simulation. In: De Cola, L., Lam, N. (eds.) Fractals in Geography. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  32. Leopold, H.-G.: Embedding of function spaces of variable order of differentiation. Czech Math. J. 49, 633–644 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lévy-Véhel, J., Peltier, R.F.: Multifractional Brownian motion: definitions and preliminary results. Tech. Rep. RR-2645 INRIA Rocquencourt (1995)

    Google Scholar 

  34. Liu, H.H., Molz, F.J.: Multifractal analyses of hydraulic conductivity distributions. Water Resour. Res. 33, 2483–2488 (1997)

    Article  Google Scholar 

  35. Mandelbrot, B.: Intermittent turbulence in self-similar cascades; divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974)

    Article  MATH  Google Scholar 

  36. Mandelbrot, B.: Multifractal measures, especially for the geophysicist. Pure Appl. Geophys. 131, 5–42 (1989)

    Article  Google Scholar 

  37. Marsan, D., Bean, J.C.: Multiscaling nature of sonic velocities and lithology in the upper crystalline crust: evidence from the KTB Main Borehole. Geophys. Res. Lett. 26, 275–278 (1999)

    Article  Google Scholar 

  38. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  39. Müller, J., Mccauley, J.L.: Implication of fractal geometry for fluid flow properties of sedimentary rocks. Transport Porous Med. 8, 133–147 (1992)

    Article  Google Scholar 

  40. Ngai, S.-M.: A dimension result arising from the L q -spectrum of a measure. P. Am. Math. Soc. 125, 2943–2951 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pecknold, S., Lovejoy, S., Schertzer, D.: Universal multifractals and anisotropic scale invariance in aeromagnetic fields. Geophys. J. Int. 145, 127–144 (2001)

    Article  Google Scholar 

  42. Posadas, A.N.D., Giménez, D., Bittelli, M., Vaz, C.M.P., Flury, M.: Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 65, 1361–1367 (2001)

    Article  Google Scholar 

  43. Riedi, R.H.: Multifractal processes. In: Doukhan, P., Oppenheim, G., Taqqu, M.S. (eds.) Theory and Applications of Long-Range Dependence. Birkhäuser, Basel (2002)

    Google Scholar 

  44. Riedi, R., Mandelbrot, B.B.: Exceptions to the multifractal formalism for discontinuous measures. Math. P. Camb. Phil. Soc. 123, 133–157 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ramm, A.G.: Random Fields Estimation Theory. Logman Scientific & Technical - Wiley, New York (1990)

    MATH  Google Scholar 

  46. Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Stochastic fractional-order differential models on fractals. Theor. Prob. Math. Stat. 67, 130–146 (2002)

    MATH  MathSciNet  Google Scholar 

  47. Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Fractional generalized random fields on bounded domains. Stoch. Anal. Appl. 21, 465–492 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Spatial and spatiotemporal Karhunen-Loève-type representations on fractal domains. Stoch. Anal. Appl. 24, 195–219 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  49. Ruiz-Medina, M.D., Anh, V.V., Angulo, J.M.: Stochastic fractional-order differential models with fractal boundary conditions. Stat. Prob. Lett. 54, 47–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Ruiz-Medina, M.D., Anh, V.V., Angulo, J.M.: Fractional generalized random fields of variable order. Stoch. Anal. Appl. 22, 775–799 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. Ruiz-Medina, M.D., Anh, V.V., Angulo, J.M.: Fractional random fields on domains with fractal boundary. Infin. Dimens Anal. Quantum Prob. Rel. Top 7, 395–417 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  52. Samko, S.G.: Differentiation and integration of variable (fractional) order. Dokl. Akad. Nauk. 342, 458–461 (1995)

    MathSciNet  Google Scholar 

  53. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  54. Strichartz, R.S.: Differential Equations on Fractals: A Tutorial. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  55. Tennekoon, L., Boufadel, M.C., Lavallée, D., Weaver, J.: Multifractal anisotropic scaling of the hydraulic conductivity. Water Resour. Res. 39, 1193 (2003)

    Article  Google Scholar 

  56. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  57. Triebel, H.: Fractals and Spectra. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  58. Weissel, J.K., Pratson, L.F., Malinverno, A.: The length-scaling properties of topography. J. Geophys. Res. 99, 13997–14012 (1994)

    Article  Google Scholar 

  59. Young, L.S.: Dimension, entropy and Lyapunov exponents. Ergod. Theor. Dyn. Syst. 2, 109–124 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angulo, J.M., Ruiz-Medina, M.D. (2011). Multifractional Random Systems on Fractal Domains. In: Pardo, L., Balakrishnan, N., Gil, M.Á. (eds) Modern Mathematical Tools and Techniques in Capturing Complexity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20853-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20853-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20852-2

  • Online ISBN: 978-3-642-20853-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics