Skip to main content

Abstract

The genus Camellia is commercially important primarily due to tea (Camellia sinensis or C. assamica) as drinks and C. japonica as well as C. reticulate due to their beautiful flowers. However, as a consequence of genetic erosion due to cultivation and vegetative propagation of only few elite clones, wild species deserve immediate conservation and utilization as an excellent source of important breeding as well as genomic resources. The Camellia genome is very dynamic as evident from a faster rate of speciation primarily due to easy outbreeding nature within the genus. Although conventional breeding, selection, and propagation contributed significantly for the last several decades for varietal improvement mainly by the traditionally growers, platers and camellia lovers, conventional methods have their limitations and application of the biotechnology becomes an alternative approach. The present chapter deliberates in-depth on taxonomic classification, cytogenetics, micropropagation, cell and tissue culture, genetic transformation, and application of DNA markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman WL (1971) Genetic and cytological studies with Camellia and related genera. Technical Bulletin No 1427, USDA, US Government Printing Office, Washington DC, USA, 115 p

    Google Scholar 

  • Ammirato PV (1985) Patterns of development in culture. In: Henke RR, Hughes KW, Constantin MP, Hollaender A (eds) Tissue culture in forestry and agriculture. Plenum, New York, USA, pp 9–29

    Google Scholar 

  • Anderson WC (1984) A revised tissue culture medium for shoot multiplication of rhododendron. J Amer Soc Hort. Sci 109:343–347

    Google Scholar 

  • Ballester A, Janeiro LV, Vieitez AM (1997) Cold storage of shoot cultures and alginate encapsulation of shoot tips of Camellia japonica and Camellia reticulate Lindley. Sci Hortic 71:67–78

    Article  Google Scholar 

  • Barciela J, Vieitz AM (1993) Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann Bot 71:395–404

    Article  Google Scholar 

  • Bennett WY (1977) Tissue culture for Camellias? Am. Camellia Yearb: 188–190

    Google Scholar 

  • Bennett WY, Scheibert P (1982) In vitro generation of callus and plantlets from cotyledons of Camellia japonica. Camellia J 37:12–15

    Google Scholar 

  • Beretta D, Vanoli M, Eccher T (1987) The influence of glucose, vitamins and IBA on rooting of Camellia shoots in vitro. In: Abstracts of symposium on vegetative propagation of woody species, Italy, p 105

    Google Scholar 

  • Bezbaruah HP (1971) Cytological investigation in the family Theaceae – I. Chromosome numbers in some Camellia species and allied genera. Caryologia 24:421–426

    Google Scholar 

  • Carlisi JC, Torres KC (1986) In vitro shoot proliferation of Camellia ‘Purple Dawn’. HortScience 21:314

    Google Scholar 

  • Chang HT (1981) A taxonomy of the genus Camellia. Acta Scientarum Naturalium Universitatis, Sunyatseni, Monographic series, vol 1, pp 1–180

    Google Scholar 

  • Chang H, Bartholomew B (1984) Camellias, Basford, London pp 67–72

    Google Scholar 

  • Chaudhury R, Radhamani J, Chandel KPS (1991) Preliminary observation in the cryopreservation of desiccated embryonic axes of tea (Camellia sinensis) L.O.Kuntze seeds for genetic conservation. Cryoletters 12:31–36

    Google Scholar 

  • Chen L, Yamaguchi L (2002) Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. J Hortic Sci Biol 77:729–732

    CAS  Google Scholar 

  • Chen L, Tong Q, Gao Q, Jilin S, Fulian Y (1997) Obsebation on pollen morphology of 8 species and 1 variety in the genus Camellia. J Tea Sci 17:183–188

    Google Scholar 

  • Chen L, Yu F, Lou L, Tong Q (2001) Morphological classification and phylogenic evolution of section Thea in the genus Camellia. In: Proceedings of international conference on O-Cha culture and science, 5–8 Oct 2001, Shizuoka, Japan, p 37

    Google Scholar 

  • Creze J, Beauchesne MG (1980) Camellia cultivation in vitro. Int Camellia J 12:31–34

    Google Scholar 

  • Cummings MP, Otto SP, Wakeley J (1995) Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 12:814–822

    PubMed  CAS  Google Scholar 

  • Das SC (2001) Tea. In: Parthasarathy VA, Bose TK, Deka PC, Das P, Mitra SK, Mohandas S (eds) Biotechnology of horticultural crops, vol 1. Naya Prokash, Calcutta, India, pp 526–546

    Google Scholar 

  • Das A, Gosal SS, Sidhu JS, Dhaliwal HS (2002) Biochemical characterization of induced variants of potato (Solanum tuberosum L.). Indian J. Genet. 62: 146–148

    Google Scholar 

  • Dood AW (1994) Tissue culture of tea (Camellia sinensis (L.) O. Kuntze) – A review. Inter J Trop Argic 12:212–247

    Google Scholar 

  • Engelmann F (1997) In vitro conservation research activities at the International Plant Genetic Resources Institute (IPGRI). Plant Tiss Cult Biotechnol 3:46–52

    Google Scholar 

  • Fukushima E, Iwasa S, Endo N, Yoshinari T (1966) Cytogenetics studies in Camellia. I. Chromosome survey in some Camellia species. Jpn J Hortic 35:413–421

    Article  Google Scholar 

  • Gamborg O, Miller R, Ojima K (1968) Nutrient requirement suspensions cultures of soybean root cells. Exp Cell Res 50:151–158

    Google Scholar 

  • Gautheret (1959) La culture des tissus végétaux : techniques et réalisations. Masson Edit

    Google Scholar 

  • George O, Adam M (2006) Investigation into the evolutionary origins of Theaceae and genus Camellia. Int Camellia J 38:78–89

    Google Scholar 

  • Ghosh-Hazra N (2001) Advances in selection and breeding of tea – a review. J Plantation Crops 29:1–17

    Google Scholar 

  • Graybeal A (1998) Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 47:9–17

    Article  PubMed  CAS  Google Scholar 

  • Gresshoff PM, Doy C H (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170

    Google Scholar 

  • Gu Z, Xiao H (2003) Physical mapping of the 18S-26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae). Plant Sci 164:279–285

    Article  CAS  Google Scholar 

  • Heller R (1953) Recherches sur la nutrition minerale des tissus vegetaux cultives in vitro Annales des Sciences Naturelles (Bot) Biol Veg 14:1–223

    Google Scholar 

  • Hirai M, Kozaki I (1986) Isozymes of citrus leaves. In: Kitaura K, Akihama T, Kukimura H, Nakajima H, Horie M, Kozaki I (eds) Development of new technology for identification and classification of tree crops and ornamentals. Fruit Tree Research Station, Ministry of Agriculture, Forestry and Fisheries, Government of Japan, Tokyo, pp 73–76

    Google Scholar 

  • Huelsenbeck JP (1995) Performance of phylogenetic methods in simulation. Syst Biol 44:17–48

    Google Scholar 

  • Hwang Y-J, Okubo H, Fujieda K (1992) Pollen tube growth, fertilization and embryo development of Camellia japonica L. × C. chrysantha (Hu) Tuyama. J Jpn Soc Hortic Sci 60:955–961

    Article  Google Scholar 

  • Ikeda N, Kawada M, Takeda Y (1991) Isozymic analysis of Camellia sinensis and its interspecific hybrids In: Proc. Inter. Symp.of Tea Science, Shizuoka, Japan, Aug. 26–28 (98)

    Google Scholar 

  • Jain SM, Newton R J (1990) Prospects of biotechnology for tea improvement. Proc Indian Natl Sci Acad 6: 441–448

    Google Scholar 

  • Janeiro LV (1996) Almacenamiento en frio de especies lenosas propagandas in vitro. PhD Thesis, University of Santiago de Compostela, Santiago de Compostela, Espana

    Google Scholar 

  • Janeiro LV, Ballester A, Vieitez AM (1995) Effect of cold storage on somatic embryogenesis systems of Camellia. J Hortic Sci 70:665–672

    Google Scholar 

  • Janeiro LV, Ballestter A, Vieitez AM (1996) Cryopreservation of somatic embryos and embryonic axes of Camellia japonica L. Plant Cell Rep 15:699–703

    Article  CAS  Google Scholar 

  • Kartha KK (1985) Meristem culture and germplasm preservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC, Boca Raton, FL, USA, pp 115–134

    Google Scholar 

  • Kato M (1985) Regeneration of plantlets from tea stem callus. Jpn J Breed 35:317–322

    Google Scholar 

  • Kato M (1986a) Micropropagation through cotyledon culture in Camellia japonica L. and Camellia sinensis L. Jpn J Breed 36:31–38

    CAS  Google Scholar 

  • Kato M (1986b) Micropropagation through cotyledon culture in Camellia sasanqua. Jpn J Breed 36:82–83

    Google Scholar 

  • Kato M (1989a) Polyploids of Camellia through culture of somatic embryos. Hortic Sci 24:1023–1025

    Google Scholar 

  • Kato M (1989b) Camellia sinensis L. (Tea): in vitro regeneration. In: Bajaj YSP (ed) Biotechnology in agriculture and forestry, vol 7: Medicinal and aromatic plants II. Springer, Berlin, Germany, pp 82–98

    Google Scholar 

  • Kondo K (1975) Cytological studies in cultivated species of Camellia. PhD Thesis, University of North Carolina, Chapel Hill, NC, USA, 260 p

    Google Scholar 

  • Kondo K, Parks CR (1979) Giemsa C-banding and karyotype of Camellia (banded karyotypes can tell more detail on inter and intra-specific relationships in Camellia). Am Camellia Yearb 34:42–47

    Google Scholar 

  • Kondo K, Parks CR (1980) Giemsa C-banding and karyotype of Camellia. In: Proceedings of international Camellia congress, Kyoto, Japan, pp 55–57

    Google Scholar 

  • Kulasegaram S (1980) Technical developments in tea production. Tea Q 49:157–183

    Google Scholar 

  • Laborey J (1986) Les camellias. Flamarion, La maison rustique, Paris, France, pp 1–238

    Google Scholar 

  • Lammerts WE (1958) Embryo culture in Camellia seed germination. In: Tourje EC (ed) Camellia Culture (171–174) Southern California Camellia Society, Pasadena, California

    Google Scholar 

  • Liang H, Zhang Z, Zhang X (1986) Investigation of the sexual process in interspecific crosses between Camellia pitardii var. yunnanesis and C. chrysantha. Acta Bot Yunn 8:147–152

    Google Scholar 

  • Lin XY, Peng QF, Tang X, Hu ZH (2008) Leaf anatomy of Camellia sect. Oleifera and sect. Paracamellia (Theaceae) with reference to their taxonomic significance. J Syst Evol 46:183–193

    Google Scholar 

  • Mariko I, Naoko K, Kouichi M, Natsu T, Misako K (2009) Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants. Planta 229:559–568

    Article  Google Scholar 

  • Matteo C, Marinoni T, Daniela VS (2010) Microsatellite-based genetic relationships in the genus Camellia: potential for improving cultivars. Genome 53:384–399

    Article  Google Scholar 

  • Ming TL (2000) Monograph of the Genus Camellia. Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Science and Technology Press, Kunming, China

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (1998) Micropropagation of tea using thidiazuran. Plant Growth Reg. 26:57–61

    Google Scholar 

  • Nadamitsu S, Andoh Y, Kondo K, Segawa M (1986) Interspecific hybrids between Camellia vietnamensis and C. chrysantha by cotyledon culture. Jpn J Breed 36:309–313

    Google Scholar 

  • Nagata T, Sakai S (1984) Differences in caffeine, flavanols and amino acids contents in leaves of cultivated species of Camellia. Jpn J Breed 34:459–467

    CAS  Google Scholar 

  • Nakamura Y (1987b) In vitro rapid plantlet culture from axillary buds of tea plant (C. sinensis (L.) O. Kuntze). Bull. Shizuoka Tea Expt Station 13:23–27

    Google Scholar 

  • Nakamura Y (1988) Efficient differentiation of adventitious embryos from cotyledon culture of Camellia sinensis and other Camellia species. Tea Res J 67:1–12

    Google Scholar 

  • Orel G, Marchant AD, Wei CF, Curry AS (2007) Molecular investigation and assessment of C. azalea (syn. C.changii Ye 1985) as potential breeding material. Int Camellia J 39:64–75

    Google Scholar 

  • Orel G, Marchent A, Richards G (2003) Evolutionary relationships of yellow-flowered Camellia species from Southeast Asia. Int Camellia J 35:88–96

    Google Scholar 

  • Parks CR, Case KF (1968) Chromatographic evidence for the genetic contamination of Camellia saluenesis in cultivation. American Camellias Year book, pp 124–134

    Google Scholar 

  • Pedroso MC, Pais MS (1993) Direct embryo formation in leaves of C. japonica L. Plant Cell Rep 12:639–643

    Article  Google Scholar 

  • Pedroso MC, Pais MS (1994) Induction of microspore embryogenesis in Camellia japonica cv. Elegans. Plant Cell Tiss Org Cult 37:129–136

    Article  Google Scholar 

  • Pedroso-Ubach MC (1991) Contribuicao para a preservacao e o melhoramento de Camellia japonica L. Master’s Thesis (English abstract). Faculdade de Ciencias da Universidade de Lisboa, Lisboa, Portugal, pp 23–50

    Google Scholar 

  • Pedroso-Ubach MC (1994) Somatic embryogeneisis in Camellia japonica L. a search for markers. PhD Thesis, Faculdade de Ciencias da Universidade de Lisboa, Lisbon, Portugal

    Google Scholar 

  • Pence VC (1995) Cryopreservation of recalcitrant seeds. In: Bajaj YSP (ed) Biotechnology in agriculture and forestry, vol 32, Crypreservation of plant germplasm I. Springer, Berlin, Germany, pp 29–50

    Google Scholar 

  • Plata E (1993) Morphogenesis in vitro de Camellia reticulata: Proceson de embryogenesis somatica regeneration de plants. Doctoral Thesis, University of Santiago de Compostela, Santiago de Compostela, Espana

    Google Scholar 

  • Plata E, Vieitez AM (1990) In vitro regeneration of Camellia reticulata by somatic embryogenesis. J Hortic Sci 65:707–714

    Google Scholar 

  • Plata E, Ballester A, Vieitez AM (1991) An anatomical study of secondary embryogenesis in Camellia reticulata. In vitro Cell Dev Biol Plant 27:183–189

    Google Scholar 

  • Prince L, Parks CR (1997) Evolutionary relationships in the tea subfamily Theoideae based on DNA sequence data. Int Camellia J 29:135–144

    Google Scholar 

  • Prince L, Parks CR (2000) Estimation on relationships of Theoideae (Theaceae) inferred from DNA Data. Int Camellia J 32:79–93

    Google Scholar 

  • Quoirin M, Lepoivre P (1977) Improved media for in vitro culture of Prunus sp. Acta Horti 78:437–442

    Google Scholar 

  • Riffaud JL Cornu D (1981) Utilization de la culture in vitro pour la multiplication de merisiers adultes (Prunus avium L.) selectionnes en foret. Agronomie 1:633–640

    Google Scholar 

  • Roberts EAH, Wight W, Wood DJ (1958) Paper chromatography as an aid to the taxonomy of thea Camellias. New Phytol 57:211–225

    Article  CAS  Google Scholar 

  • Rokas A, King N, Finnerty J, Carroll SB (2003a) Conflicting phylogenetic signals at the base of the metazoan tree. Evol Dev 5:346–359

    Article  PubMed  CAS  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003b) Genome scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  PubMed  CAS  Google Scholar 

  • Salinero MC, Silva-Pando FJ (1986) La multiplication delas camellias. In: Diputacion provincial de Pontevedra (ed) La Camellia. C Peon. Pontevedra, Spain, pp 175–184

    Google Scholar 

  • Samartin A (1991) Potential for large scale in vitro propagation of Camellia sasanqua Thunb. J Hortic Sci 67:211–217

    Google Scholar 

  • Samartin A, Vieitez AM, Vieitez E (1984) In vitro propagation of Camellia japonica seedlings. HortScience 19:225–226

    CAS  Google Scholar 

  • Samartin A, Vieitez AM, Vieitez E (1986) Rooting of tissue cultured camellias. J Hortic Sci 61:113–120

    CAS  Google Scholar 

  • San-Jose MC, Ballester A, Vieitez AM (1988) Factors affecting in vitro propagation of Quercus robus L. Tree Physiol 4:281–290

    Google Scholar 

  • San-Jose MC, Vieitez AM (1990) In vitro regeneration of Camellia reticulata cultivar “Captain Rawes” from adult material. Sci Hortic 43:155–162

    Article  Google Scholar 

  • San-Jose MC, Vieitez AM (1992) Adventitious shoot regeneration from in vitro leaves of adult Camellia reticulate. J Hortic Sci 67:677–683

    CAS  Google Scholar 

  • San-Jose MC, Vieitez AM (1993) Regeneration of Camellia plantlets from leaf explant cultures by embryogenesis and caulogenesis. Sci Hortic 54:303–315

    Article  Google Scholar 

  • San-Jose MC, Vidal N, Vieitez AM (1991) Improved efficiency of in vitro propagation of Camellia reticulata cv. captain leaves. J Hortic Sci 66:755–762

    Google Scholar 

  • Schenk RU, Hildebrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Google Scholar 

  • Sealy JR (1958) A revision of the genus Camellia. Royal Horticultural Society, London, UK

    Google Scholar 

  • Tanaka T, Mizutani T, Shibata M, Tanikawa N, Parks CR (2005) Cytogenetic studies on the origin of Camellia × vernalis. V. Estimation of the seed parent of C. × vernalis that evolved about 400 years ago by cpDNA analysis. J Japan Soc Hor. Sci 74:464–468

    Google Scholar 

  • Tabachnick L, Kester DE (1977) Shoot culture for almond and almond peach hybrid clones in vitro Hort Sci 12:545–547

    Google Scholar 

  • Tateishi N, Ozaki Y, Okubo H (2007) Occurrence of ploidy variation in Camellia vernalis. J Fac Agric Kyushu Univ 52:11–15

    Google Scholar 

  • Tateishin N, Ozaki Y, Okubo H (2010) Molecular Cloning of the Genes Involved in Anthocyanin biosynthesis in Camellia japonica. J Fac Agric Kyushu Univ 55:21–28

    Google Scholar 

  • Thakor BH (1997) A re-examination of the phylogenetic relationships within genus Camellia. Int Camellia J 29:131–135

    Google Scholar 

  • Tian-Ling LU (1982) Regeneration of plantlets in cultures of immature cotyledons and young embryos of Camellia oleifera Abel. Acta Biol Exp Sin 15:393–403

    Google Scholar 

  • Tiao JX, Parks CR (1997) Identification of closely related Camellia hybrid and mutant using molecular markers. Int Camellia J 29:111–116

    Google Scholar 

  • Tiao JX, Parks CR (2001) Research for a new classification system for the genus Camellia. Int Camellia J 33:109–112

    Google Scholar 

  • Tiao JX, Parks CR (2003) Molecular analysis of the genus Camellia. Int Camellia J 35:57–65

    Google Scholar 

  • Torres KC, Carlisi JA (1986) Shoot and root organogenesis of Camellia sasanqua Plant. Cell Rep 5:381–384

    Article  CAS  Google Scholar 

  • Tosca A, Pondofi R, Vasconi S (1996) Organogenesis in Camellia x williamsii: cytokinin requirement and susceptibility to antibiotics. Plant Cell Rep 15:541–544

    Article  CAS  Google Scholar 

  • Tsumura Y, Ohba K, Strauss SH (1996) Diversity and inheritance of inter-simple sequence repeat polymorphism in douglus fir (Pseudotsuga menziessi) and sugi (Cryptomeria japonica). Theor Appl Genet 92:40–45

    Article  CAS  Google Scholar 

  • Tukey HB (1934) Artificial culture methods for isolated embryos of deciduous fruits. Amer Soc Hort Sci Proc 32:303–322

    Google Scholar 

  • Ueno S, Yoshimaru H, Tomaru N, Yamamoto S (1999) Development and characterization of microsatellite markers in Camellia japonica L. Mol Ecol 8:335–336

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2000) Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima. Jpn Mol Ecol 9:647–656

    Article  CAS  Google Scholar 

  • Vieitez AM (1994) Somatic embryogenesis in Camellia spp. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants. Kluwer Academic, Dordrecht, Netherlands, pp 235–276

    Google Scholar 

  • Vieitez AM, Barciela J (1990) Somatic embryogenesis and plant regeneration from embryonic tissues of Camellia japonica L. Plant Cell Tiss Org Cult 21:267–274

    Article  CAS  Google Scholar 

  • Vieitez ML, Vieitez AM (1983) Propagation of camellias by the hypocotyls grafting. American Camellias Year book, pp 1–4

    Google Scholar 

  • Vieitez AM, Barciela J, Ballester A (1989a) Propagation of Camellia japonica cv. Alba Plena by tissue culture. J Hortic Sci 64:177–182

    CAS  Google Scholar 

  • Vieitez AM, San-Jose MC, Ballester A (1989b) Progress towards clonal propagation of Camellia japonica cv. Alba Plena by tissue culture techniques. J Hortic Sci 64:605–610

    Google Scholar 

  • Vieitez AM, San-Jose C, Vieitez J, Ballester A (1991) Somatic embryogenesis from roots of Camellia japonica plantlets cultured in vitro. J Am Soc Hortic Sci 116:753–757

    CAS  Google Scholar 

  • Vijayan K, Tsou CH (2008) Technical report on the molecular phylogeny of Camellia with nr ITS: the need for high quality DNA and PCR amplification with Pfu-DNA polymerase. Bot Stud 49:177–188

    CAS  Google Scholar 

  • Vijayan K, Zhang WJ, Tsou CH (2009) Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am J Bot 96:1348–1360

    Google Scholar 

  • Wei X, Wei JQ, Cao HL, Li H, Ye WH (2005) Genetic diversity and differentiation of Camellia euphlebia (Theaceae) in Guangxi, China. Ann Bot Fenn 42:365–370

    Google Scholar 

  • Wei X, Hong-Lin C, Yun-Sheng J, Wan-Hui YE, Xue-Jun GE, Feng LI (2008) Population genetic structure of Camellia nitidissima (Theaceae) and conservation implications. Bot Stud 49:147–153

    Google Scholar 

  • Wendel JF, Parks CR (1982) Genetic control of isozyme variation in Camellia japonica L. J Hered 73:197–204

    CAS  Google Scholar 

  • Wendel JF, Parks CR (1983) Cultivar identification in Camellia japonica L. using allozyme polymorphisms. J Am Soc Hortic Sci 108:290–295

    Google Scholar 

  • Wendel JF, Parks CR (1984) Distorted segregation and linkage of alcohol dehydrogenase genes in Camellia japonica L. (Theaceae). Biochem Genet 22:739–748

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Parks CR (1985) Genetic diversity and population structure in Camellia japonica L. (Theaceae). Am J Bot 72:52–65

    Article  Google Scholar 

  • Wickremaratne MR (1981) Variation in some leaf in tea (Camellia sinensis L.) and their use in the identification of clones. Tea Q 50:183–189

    Google Scholar 

  • Wight W (1958) The agrotype concept in tea taxonomy. Nature 181:893–895

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafaliski JA, Tingey SV (1990) DNA polymorphism amplified by arbitory primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellite in rice. Mol Genet 241:225–235

    Article  CAS  Google Scholar 

  • Xiao TJ, Parks CR (2003) Molecular analysis of the genus Camellia. Int Camellia J 35:57–65

    Google Scholar 

  • Yamaguchi S, Kunitake T, Hisatomi S (1987) Interspecific hybrid between Camellia japonica cv. choclidori and C. chrysantha produced by embryo culture. Jpn J Breed 37:203–206

    Google Scholar 

  • Yan MQ, Ping C (1983) Studies on development of embryoids from the culture cotyledons of Thea sinensis L. Sci. Silv. Sin. 19:25–29

    Google Scholar 

  • Yan MQ, Ping C, Wei M, Wang YH (1984) Tissue culture and transplanting of Camellia oleifera. Sci Silvae Sin 20:341–350

    Google Scholar 

  • Yang Z, Goldman N, Friday A (1994) Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 11:316–324

    PubMed  CAS  Google Scholar 

  • Yang JB, Li HT, Yang SX, Li DZ, Yang YY (2006) The application of four DNA sequences to studying molecular phylogeny of Camellia (Theaceae). Acta Bot Yunn 28:108–114

    CAS  Google Scholar 

  • Yoshikawa N, Parks CR (2001) Systematic studies of Camellia japonica and closely related species. Int Camellia J 33:117–121

    Google Scholar 

  • Yoshikawa K, Yoshikawa N (1990) Inter-specific hybridization of Camellia. Bull Seibu Maizuru Bot Inst 5:56–75

    Google Scholar 

  • Zhang DQ, Tan XF, Xie LS, Chen HP, Qiu J, Hu FM (2008) The cDNA cloning and characteristic of stearoyl-acp desaturase gene of Camellia oleifera. Acta Hortic 769:55–61

    CAS  Google Scholar 

  • Zhuang C, Liang H (1985a) In vitro embryoid formation of Camellia reticulata L. Acta Biol Exp Sin 18:275–281

    CAS  Google Scholar 

  • Zhuang C, Liang H (1985b) Somatic embryogenesis and plantlet formation in cotyledon culture of Camellia chrysantha. Acta Bot Yunn 7:446–450

    Google Scholar 

  • Zhuang C, Duan J, Zhou J (1988) Somatic embryogenesis and plantlets regeneration of Camellia sasanqua. Acta Bot Yunn 10:241–244

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple-sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mondal, T.K. (2011). Camellia. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21201-7_2

Download citation

Publish with us

Policies and ethics