Skip to main content

Manganese Oxidation by Bacteria: Biogeochemical Aspects

  • Chapter
  • First Online:
Molecular Biomineralization

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 52))

Abstract

Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next to oxygen in the aquatic environment and therefore control the fate of several elements. Mn oxidizing bacteria have a suit of enzymes that not only help to scavenge Mn but also other associated elements, thus playing a crucial role in biogeochemical cycles. This article reviews the importance of manganese and its interaction with microorganisms in the oxidative Mn cycle in aquatic realms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LF, Ghiorse WC (1986) Physiology and ultrastructure of Leptothrix discophora SS-1. Arch Microbiol 145:126–135

    Article  CAS  Google Scholar 

  • Adams LF, Ghiorse WC (1987) Characterization of an extracellular Mn2+-oxidizing activity and isolation of Mn2+-oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169:1279–1285

    PubMed  CAS  Google Scholar 

  • Adams LF, Ghiorse WC (1988) Oxidation state of Mn in the Mn oxide produced by Leptothrix discophora SS-1. Geochim Cosmochim Acta 52:2073–2076

    Article  CAS  Google Scholar 

  • Ali SH, Stokes JL (1971) Stimulation of heterotrophic and autotrophic growth of Sphaerotilus discophorus by manganous ions. Anton Van Leeuwenhoek 37:519–528

    Article  CAS  Google Scholar 

  • Anderson CR, Dick GJ, Chu ML, Cho JC, Davis RE, Bräuer SL, Tebo BM (2009a) Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha-Proteobacteria from the order Rhizobiales. Geomicrobiol J 26:189–198

    Article  PubMed  CAS  Google Scholar 

  • Anderson CR, Johnson HA, Caputo N, Davis RE, Torpey JW, Tebo BM (2009b) Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” Strain SI85-9A1 and Erythrobacter sp. Strain SD-21. Appl Environ Microbiol 75:4130–4138

    Article  PubMed  CAS  Google Scholar 

  • Antony R, Sujith PP, Fernandes SO, Verma P, Khedekar VD, Loka Bharathi PA (2010) Cobalt immobilization by manganese oxidizing bacteria from Indian Ridge System. Curr Microbiol 62:840–849

    Article  PubMed  CAS  Google Scholar 

  • Appanna VD (1988) Stimulation of exopolysaccharide production in Rhizobium meliloti JJ-1 by manganese. Biotechnol Lett 10:205–206

    Article  CAS  Google Scholar 

  • Appanna VD, Gazso LG, St. Pierre M (1996) Multiple-metal tolerance in Pseudomonas fluorescens and its biotechnological significance. J Biotechnol 52:75–80

    Article  CAS  Google Scholar 

  • Archibald F (1986) Manganese: its acquisition by and function in the lactic acid bacteria. Crit Rev Microbiol 13:63–109

    Article  PubMed  CAS  Google Scholar 

  • Arcuri EJ, Ehrlich HL (1979) Cytochrome involvement in Mn(II) oxidation by two marine bacteria. Appl Environ Microbiol 37:916–923

    PubMed  CAS  Google Scholar 

  • Arcuri EJ, Ehrlich HL (1980) Electron transfer coupled to Mn(II) oxidation in two deep-sea pacific ocean isolates. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Springer, New York, pp 339–344

    Google Scholar 

  • Babich H, Stotzky G (1983) Influence of chemical speciation on the toxicity of heavy metals to the microbiota. In: Nriagu JO (ed) Aquatic toxicology. Wiley Interscience, New York, pp 1–46

    Google Scholar 

  • Boogerd FC, de Vrind JPM (1987) Manganese oxidation by Leptothrix discophora. J Bacteriol 169:489–494

    PubMed  CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, London

    Google Scholar 

  • Bromfield SM (1978) The oxidation of manganous ions under acidic conditions by an acidophilous actinomycete from acid soil. Aust J Soil Res 16:91–100

    Article  CAS  Google Scholar 

  • Bromfield SM, David DJ (1976) Sorption and oxidation of manganous ions and reduction of manganese oxide by cell suspensions of a manganese oxidizing bacterium. Soil Biol Biochem 8:37–43

    Article  CAS  Google Scholar 

  • Brouwers G-J, de Vrind JPM, Corstjens PLAM, Cornelis P, Baysse C, de Vrind-de Jong EW (1999) CumA, a gene encoding a multicopper oxidase, is involved in Mn2+-oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65:1762–1768

    PubMed  CAS  Google Scholar 

  • Brouwers G-J, Corstjens PLAM, de Vrind JPM, Verkamman A, de Kuyper M, de Vrind-de Jong EW (2000a) Stimulation of Mn2+ oxidation in Leptothrix discophora SS-1 by Cu2+ and sequence analysis of the region flanking the gene encoding putative multicopper oxidase MofA. Geomicrobiol J 17:25–33

    Article  CAS  Google Scholar 

  • Brouwers G-J, Vijgenboom E, Corstjens PLAM, de Vrind JPM, de Vrind-de Jong EW (2000b) Bacterial Mn2+ oxidizing systems and multicopper oxidases: An overview of mechanisms and functions. Geomicrobiol J 17:1–24

    Article  CAS  Google Scholar 

  • Calvert SE, Pedersen TF (1996) Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ Geol 91:36–47

    Article  CAS  Google Scholar 

  • Caspi R, Haygood MG, Tebo BM (1996) Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology 142:2549–2559

    Article  PubMed  CAS  Google Scholar 

  • Caspi R, Tebo BM, Haygood MG (1998) c-type cytochromes and manganese oxidation in Pseudomonas putida strain MnB1. Appl Environ Microbiol 64:3549–3555

    PubMed  CAS  Google Scholar 

  • Cellier M (2002) Bacterial genes controlling manganese accumulation. In: Winkelmann G (ed) Microbial Transport Systems. Wiley-VCH Verlag GmbH & Co., KGaA, pp 325–345

    Google Scholar 

  • Chander M, Setlow B, Setlow P (1998) The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn2+ and is pH sensitive. Can J Microbiol 44:759–767

    PubMed  CAS  Google Scholar 

  • Chandramohan D, Loka Bharathi PA, Nair S, Matondkar SGP (1987) Bacteriology of ferromanganese nodules from the Indian Ocean. Geomicrobiol J 5:17–31

    Article  CAS  Google Scholar 

  • Chapnick SD, Mire WS, Nealson KH (1982) Microbially mediated manganese oxidation in a freshwater lake. Limnol Oceanogr 27:l004–l1014

    Article  Google Scholar 

  • Christianson DW (1997) Structural chemistry and biology of manganese metalloenzymes. Prog Biophys Mol Biol 67:217–252

    Article  PubMed  CAS  Google Scholar 

  • Corstjens PLAM, de Vrind JPM, Goosen T, de Vrind-de Jong EW (1997) Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol J 14:91–108

    Article  CAS  Google Scholar 

  • Crowley JD, Traynor DA, Weatherburn DC (2000) Enzymes and proteins containing manganese: an overview. Met Ions Biol Syst 37:209–278

    PubMed  CAS  Google Scholar 

  • Czekalla C, Mevius W, Hanert H (1985) Quantitative removal of iron and manganese by microorganisms in rapid sand filters. Wat Suppl 3:111–123

    CAS  Google Scholar 

  • Davis RE, Stakes DS, Wheat CG, Moyer CL (2009) Bacterial variability within an iron-silica-manganese-rich hydrothermal mound located off-axis at the cleft segment, Juan de Fuca Ridge. Geomicrobiol J 26:570–580

    Article  CAS  Google Scholar 

  • de Rudder J, Van de Wiele T, Dhooge W, Comhaire F, Verstraete W (2004) Advanced water treatment with manganese oxide for the removal of 17 a-ethynylestradiol (EE2). Water Res 38:184–192

    Article  PubMed  CAS  Google Scholar 

  • de Vrind JPM, Boogerd FC, de Vrind-de Jong EW (1986a) Manganese reduction by a marine Bacillus species. J Bacteriol 167:30–34

    PubMed  Google Scholar 

  • de Vrind JPM, de Vrind-de Jong EW, de Voogt J-WH, Westbroek P, Boogerd FC, Rosson RA (1986b) Manganese oxidation by spores and spore coats of a marine Bacillus species. Appl Environ Microbiol 52:1096–1100

    PubMed  Google Scholar 

  • de Vrind J, de Groot A, Brouwers GJ, Tommassen J, de Vrind-de Jong EW (2003) Identification of a novel Gsp-related pathway required for secretion of the manganese oxidizing factor of Pseudomonas putida strain GB-1. Mol Microbiol 47:993–1006

    Article  PubMed  Google Scholar 

  • Diaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd JD, Johnston AWB (2004) The Fur-like protein Mur of Rhizobium leguminosarum is a Mn2+-responsive transcriptional regulator. Microbiology 150:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Dick GJ, Lee YE, Tebo BM (2006) Manganese(II)-oxidizing bacillus spores in guaymas basin hydrothermal sediments and plumes. Appl Environ Microbiol 72:3184–3190

    Article  PubMed  CAS  Google Scholar 

  • Dick GJ, Podell S, Johnson HA, Rivera-Espinoza Y, Bernier-Latmani R, McCarthy JK, Torpey JW, Clement BG, Gaasterland T, Tebo BM (2008a) Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp.Strain SI85-9A1. Appl Environ Microbiol 74:2646–2658

    Article  PubMed  CAS  Google Scholar 

  • Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008b) Direct Identification of a bacterial manganese(ii) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol 74:1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Dong H (2010) Mineral-microbe interactions: a review. Front Earth Sci China 4:127–147

    Article  CAS  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    Article  CAS  Google Scholar 

  • Douka C (1980) Kinetics of manganese oxidation by cell-free extracts of bacteria isolated from manganese concretions from soil. Appl Environ Microbiol 39:74–80

    PubMed  CAS  Google Scholar 

  • Doyle RJ (1989) How cell walls of gram-positive bacteria interact with metal ions. In: Beveridge TJ, Doyle RJ (eds) Metal Ions and Bacteria. Wiley, New York, pp 275–293

    Google Scholar 

  • Edenborn HM, Paquin Y, Chateauneuf G (1985) Bacterial contribution to manganese oxidation in a deep coastal sediment. Estuar Coast Shelf Sci 21:801–815

    Article  CAS  Google Scholar 

  • Ehrlich HL (1963) Bacteriology of manganese nodules. I. Bacterial action on manganese in nodule enrichments. Appl Microbiol 11:15–19

    PubMed  CAS  Google Scholar 

  • Ehrlich HL (1968) Bacteriology of manganese nodules. II. Manganese oxidation by cell-free extract from a manganese nodule bacterium. Appl Microbiol 16:197–202

    PubMed  CAS  Google Scholar 

  • Ehrlich HL (1971) Bacteriology of manganese nodules. V. Effect of hydrostatic pressure on bacterial oxidation of Mn(II) and reduction of MnO2. Appl Microbiol 21:306–310

    CAS  Google Scholar 

  • Ehrlich HL (1976) Manganese as an energy source for bacteria. In: Nriagu JO (ed) Environmental biogeochemistry. Ann Arbor Science, Michigan, pp 633–644

    Google Scholar 

  • Ehrlich HL (1978) Inorganic energy sources for chemolithotrophic and mixotrophic bacteria. Geomicrobiol J 1:65–83

    Article  CAS  Google Scholar 

  • Ehrlich HL (1980) Different forms of microbial manganese oxidation and reduction and their environmental significance. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Springer, New York, pp 327–332

    Google Scholar 

  • Ehrlich HL (1982) Enhanced removal of Mn2+ from seawater by marine sediments and clay minerals in the presence of bacteria. Can J Microbiol 28:1389–1395

    Article  CAS  Google Scholar 

  • Ehrlich HL (1983) Manganese-oxidizing bacteria from a hydrothermally active area on the Galapagos. Rift Ecol Bull 35:357–366

    CAS  Google Scholar 

  • Ehrlich HL (1987) Manganese oxide reduction as a form of anaerobic respiration. Geomicrobiol J 5:423–431

    Article  CAS  Google Scholar 

  • Ehrlich HL (2002a) Geomicrobiology. Marcel Dekker Inc., New York

    Book  Google Scholar 

  • Ehrlich HL (2002b) How microbes mobilize metals in ores: a review of current understandings and proposals for future research. Miner Metall Proc 19:220–224

    CAS  Google Scholar 

  • Ehrlich HL, Salerno JC (1990) Energy coupling in Mn2+ oxidation by a marine bacterium. Arch Microbiol 154:12–17

    CAS  Google Scholar 

  • Emerson D (2009) Potential for iron-reduction and iron-cycling in iron oxyhydroxide-rich microbial mats at Loihi Seamount. Geomicrobiol J 26:639–647

    Article  CAS  Google Scholar 

  • Emerson S, Kalhorn D, Jacobs L, Tebo BM, Nealson KH, Rosson RA (1982) Environmental oxidation rate of manganese (II): Bacterial catalysis. Geochim Cosmochim Acta 46:1073–1079

    Article  CAS  Google Scholar 

  • Ercole C, Altieri F, Piccone C, Del Gallo M, Lepidi A (1999) Influence of manganese dioxide and manganic ions on the production of two proteins in Arthrobacter sp. Geomicrobiol J 16:95–103

    Article  CAS  Google Scholar 

  • Falamin AA, Pinevich AV (2006) Isolation and characterization of a unicellular manganese-oxidizing bacterium from a freshwater lake in Northwestern Russia. Microbiology 75:180–185

    Article  CAS  Google Scholar 

  • Fernandes SO, Krishnan KP, Khedekar VD, Loka Bharathi PA (2005) Manganese oxidation by bacterial isolates from the Indian Ridge System. Biometals 18:483–492

    Article  PubMed  CAS  Google Scholar 

  • Forrez I, Carballa M, Verbeken K, Vanhaecke L, Schlusener M, Ternes T, Boon N, Verstraete W (2010) Diclofenac oxidation by biogenic manganese oxides. Environ Sci Technol 44:3449–3454

    Article  PubMed  CAS  Google Scholar 

  • Fortin D, Davis B, Southam G, Beveridge TJ (1995) Biogeochemical phenomena induced by bacteria within sulfidic mine tailings. J Ind Microbiol Biotechnol 14:178–185

    CAS  Google Scholar 

  • Francis CA, Tebo BM (1999) Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals. J Mol Microbiol Biotechnol 1:71–78

    PubMed  CAS  Google Scholar 

  • Francis CA, Tebo BM (2000) New insights into the diversity of genes and enzymes involved in bacterial Mn(II) oxidation. In: Morgan J (ed) Chemical speciation and reactivity in water chemistry and water technology: a symposium in honor of James. ILSI Press, Washington, DC, pp 488–490

    Google Scholar 

  • Francis CA, Tebo BM (2001) cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Appl Environ Microbiol 67:4272–4278

    Article  PubMed  CAS  Google Scholar 

  • Francis CA, Tebo BM (2002) Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880

    Article  PubMed  CAS  Google Scholar 

  • Francis CA, Co E, Tebo BM (2001) Enzymatic manganese(II) oxidation by a marine α-proteobacterium. Appl Environ Microbiol 67:4024–4029

    Article  PubMed  CAS  Google Scholar 

  • Francis CA, Casciotti KL, Tebo BM (2002) Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch Microbiol 178:450–456

    Article  PubMed  CAS  Google Scholar 

  • El-Gheriany IA, Bocioaga D, Hay AG, Ghiorse WC, Shuler ML, Lion LW (2009) Iron requirement for Mn(II) oxidation by Leptothrix discophora SS-1. Appl Environ Microbiol 75:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38:515–550

    Article  PubMed  CAS  Google Scholar 

  • Ghiorse WC, Hirsch P (1978) Iron and manganese deposition by budding bacteria. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology. Ann Arbor Science, Ann Arbor, pp 897–909

    Google Scholar 

  • Ghiorse WC, Hirsch P (1979) An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch Microbiol 123:213–226

    Article  CAS  Google Scholar 

  • Ghoirse WC (1986) Applications of ferromanganese-depositing microorganisms to industrial metal recovery processes. Biotech Bioeng Symp 16:141–148

    Google Scholar 

  • Glasby GP (2006) Manganese: predominant role of nodules and crusts. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer Berlin, Heidelberg, pp 371–427

    Chapter  Google Scholar 

  • Glazer BT, Rouxel OJ (2009) Redox speciation and distribution within diverse iron-dominated microbial habitats at Loihi Seamount. Geomicrobiol J 26:606–622

    Article  CAS  Google Scholar 

  • Gregory E, Staley JT (1982) Widespread distribution of ability to oxidize manganese among freshwater bacteria. Appl Environ Microbiol 44:509–511

    PubMed  CAS  Google Scholar 

  • Groot MNN, Klaassens E, de Vos WM, Delcour J, Hols P, Kleerebezem M (2005) Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis. Microbiology 151:1229–1238

    Article  PubMed  CAS  Google Scholar 

  • Guedon E, Moore CM, Que Q, Wang T, Ye RW, Helmann JD (2003) The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and σB regulons. Mol Microbiol 49:1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Hajj H, Makemson J (1976) Determination of growth of Sphaerotilus discophorus in the presence of manganese. Appl Environ Microbiol 32:699–702

    PubMed  CAS  Google Scholar 

  • Hansel CM, Francis CA (2006) Coupled photochemical and enzymatic Mn(II) oxidation pathways of a planktonic Roseobacter-like bacterium. Appl Environ Microbiol 72:3543–3549

    Article  PubMed  CAS  Google Scholar 

  • Hao Z, Chen S, Wilson DB (1999) Cloning, expression and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum. Appl Environ Microbiol 65:4746–4752

    PubMed  CAS  Google Scholar 

  • He J, Zhang L, Jin S, Zhu Y, Liu F (2008) Bacterial communities inside and surrounding soil iron–manganese nodules. Geomicrobiol J 25:14–24

    Article  CAS  Google Scholar 

  • He J, Meng Y, Zheng Y, Zhang L (2010) Cr(III) oxidation coupled with Mn(II) bacterial oxidation in the environment. J Soil Sediment 10:767–773

    Article  CAS  Google Scholar 

  • Hem JD (1978) Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem Geol 21:199–218

    Article  CAS  Google Scholar 

  • Hennebel T, Gusseme BD, Boon N, Verstraete W (2009) Biogenic metals in advanced water treatment. Trends Biotechnol 27:90–98

    Article  PubMed  CAS  Google Scholar 

  • Herschel A, Clasen J (1998) The importance of the manganese-oxidizing microorganism Metallogeniurn personaturn for the retention of manganese in the Wahnbach reservoir. Internat Rev Hydrobiol 83:19–30

    Article  CAS  Google Scholar 

  • Hohle TH, O’Brian MR (2009) The mntH gene encodes the major Mn2+ transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein. Mol Microbiol 72:399–409

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh MJ, Wharton SJ, Karavolos M, Foster SJ (2002) Manganese: elemental defence for a life with oxygen? Trends Microbiol 10:496–501

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Wu Q (2004) Identification of genes controlled by the manganese response regulator, ManR, in the cyanobacterium, Anabaena sp. PCC 7120. Biotechnol Lett 26:1397–1401

    Article  PubMed  CAS  Google Scholar 

  • Jakubovics NS, Jenkinson HF (2001) Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147:1709–1718

    PubMed  CAS  Google Scholar 

  • Jakubovics NS, Valentine RA (2009) A new direction for manganese homeostasis in bacteria: identification of a novel efflux system in Streptococcus pneumonia. Mol Microbiol 72:1–4

    Article  PubMed  CAS  Google Scholar 

  • Jaquet JM, Nembrim G, Garcla J, Vernet JP (1982) The manganese cycle in Lac Leman, Switzerland: the role of Metallogenium. Hydrobiologia 91:323–340

    Google Scholar 

  • Johnson KS (2006) Manganese redox chemistry revisited. Science 313:1896–1897

    Article  PubMed  CAS  Google Scholar 

  • Johnson CG, Kipphut GW (1988) Microbially mediated Mn(II) oxidation in an oligotrophic Arctic lake. Appl Environ Microbiol 54:1440–1445

    Google Scholar 

  • Johnson AH, Stokes JL (1966) Manganese oxidation by Sphaerotilus discophorus. J Bacteriol 91:1543–1547

    PubMed  CAS  Google Scholar 

  • Jung WK, Schweisfurth R (1979) Manganese oxidation by an intracellular protein of a Pseudomonas species. Z Allg Mikrobiol 19:107–115

    Article  PubMed  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Biological treatment of Mn(II) and Fe(II) containing groundwater: kinetic considerations and product characterization. Water Res 38:1922–1932

    Article  PubMed  CAS  Google Scholar 

  • Kehres DG, Zaharik ML, Finlay BB, Maguire ME (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100

    Article  PubMed  CAS  Google Scholar 

  • Kepkay PE (1985) Kinetics of microbial manganese oxidation and trace metal binding in sediments: results from an in situ dialysis technique. Limnol Oceanogr 30:713–726

    Article  CAS  Google Scholar 

  • Kepkay PE, Nealson KH (1982) Surface enhancement of sporulation and manganese oxidation by a marine Bacillus. J Bacteriol 151:1022–1026

    PubMed  CAS  Google Scholar 

  • Kepkay PE, Nealson KH (1987) Growth of a manganese oxidizing Pseudomonas sp. in continuous culture. Arch Microbiol 148:63–67

    Article  CAS  Google Scholar 

  • Keren N, Kidd MJ, Penner-Hahn JE, Pakrasi HB (2002) A light-dependent mechanism for massive accumulation of manganese in the photosynthetic bacterium Synechocystis sp. PCC 6803. Biochemistry 41:15085–15092

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Pasten PA, Gaillard JF, Stair PC (2003) Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis. J Am Chem Soc 125:14284–14285

    Article  PubMed  CAS  Google Scholar 

  • Kirchner WB, Grabowski S (1972) Manganese in lacustrine ecosystems: a review. Am Water Resour Assoc 8:1259–1264

    Article  CAS  Google Scholar 

  • Krishnan KP, Fernandes SO, Chandan GS, Loka Bharathi PA (2007) Bacterial contribution to mitigation of iron and manganese in mangrove sediments. Mar Pollut Bull 54:1427–1433

    Article  PubMed  CAS  Google Scholar 

  • Krishnan KP, Sinha RK, Krishna K, Nair S, Singh SM (2009) Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes. Polar Biol 32:1765–1778

    Article  Google Scholar 

  • Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171:257–264

    Article  CAS  Google Scholar 

  • Layton AC, Karanth PN, Lajoie CA, Meyers AJ, Gregory IR, Stapleton RD, Taylor DE, Sayler GS (2000) Quantification of Hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis. Appl Environ Microbiol 66:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Lidstrom ME, Engebrecht J, Nealson KH (1983) Evidence for plasmid-encoded manganese oxidation in a marine pseudomonad. FEMS Microbiol Lett 19:1–6

    Article  CAS  Google Scholar 

  • Lieser SA, Davis TC, Helmann JD, Cohen SM (2003) DNA-binding and oligomerization studies of the manganese(II) metalloregulatory protein MntR from Bacillus subtilis. Biochemistry 42:12634–12642

    Article  PubMed  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Maki JS, Tebo BM, Palmer FE, Nealson KH, Staley JT (1987) The abundance and biological activity of manganese-oxidizing bacteria and Metallogenium-like morphotypes in Lake Washington, USA. FEMS Microbiol Ecol 45:21–29

    Article  CAS  Google Scholar 

  • Mandernack KW, Tebo BM (1993) Manganese scavenging and oxidation at hydrothermal vents and in vent plumes. Geochim Cosmochim Acta 57:3907–3923

    Article  CAS  Google Scholar 

  • Mandernack KW, Post J, Tebo BM (1995) Manganese mineral formation by bacterial-spores of the marine Bacillus, SG-1: evidence for the direct oxidation of Mn(II) to Mn(IV). Geochim Cosmochim Acta 59:4393–4408

    Article  CAS  Google Scholar 

  • Mann S, Sparks NHC, Scott GHE, de Vrind-de Jong EW (1988) Oxidation of manganese and formation of Mn3O4 (Hausmannite) by spore coats of a Marine Bacillus sp. Appl Environ Microbiol 54:2140–2143

    PubMed  CAS  Google Scholar 

  • Mayhew LE, Swanner ED, Martin AP, Templeton AS (2008) Phylogenetic relationships and functional genes: distribution of gene (mnxG) encoding a putative manganese-oxidizing enzyme in Bacillus species. Appl Environ Microbiol 74:7265–7271

    Article  PubMed  CAS  Google Scholar 

  • Mills VH, Randles CI (1979) Manganese oxidation in Sphaerotilus discophorus particles. J Gen Appl Microbiol 25:205–207

    Article  CAS  Google Scholar 

  • Miyata N, Tani Y, Sakata M, Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8

    Article  PubMed  CAS  Google Scholar 

  • Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195

    Article  PubMed  CAS  Google Scholar 

  • Moore WS, Reid DF (1973) Extraction of radium from natural waters using manganese-impregnated acrylic fibers. J Geophys Res 78:8880–8886

    Article  CAS  Google Scholar 

  • Mouchet P (1992) From conventional to biological removal of iron and manganese in France. J Am Water Works Assoc 84:158–167

    CAS  Google Scholar 

  • Moy YP, Neilan BA, Foster LJR, Madgwick JC, Rogers PL (2003) Screening, identification and kinetic characterization of a bacterium for Mn(II) uptake and oxidation. Biotechnol Lett 25:1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Murray KJ, Tebo BM (2007) Cr(III) is indirectly oxidized by the Mn(II)-oxidizing bacterium Bacillus sp strain SG-1. Environ Sci Technol 41:528–533

    Article  PubMed  CAS  Google Scholar 

  • Nealson KH (1983) The microbial manganese cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific Publications, Oxford, pp 191–221

    Google Scholar 

  • Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439–443

    PubMed  CAS  Google Scholar 

  • Nealson KH, Tebo BM, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318

    Article  CAS  Google Scholar 

  • Nealson KH, Rosson RA, Myers CR (1989) Mechanisms of oxidation and reduction of manganese. In: Beveridge T, Doyle R (eds) Metal ions and bacteria. Wiley, New York, pp 383–411

    Google Scholar 

  • Nelson YM, Lion LW, Ghiorse WC, Shuler ML (1999) Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl Environ Microbiol 65:175–180

    PubMed  CAS  Google Scholar 

  • Nelson YM, Lion LW, Shuler ML, Ghiorse WC (2002) Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Environ Sci Technol 36:421–425

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Bao DH, Katoh H, Shibata M, Pakrasi HB, Bhattacharyya-Pakrasi M (2002) A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J Biol Chem 277:28981–28986

    Article  PubMed  CAS  Google Scholar 

  • Palma C, Martinez AT, Lema JM, Martinez MJ (2000) Different fungal manganese-oxidizing peroxidases: a comparison between Bjerkandera sp. and Phanerochaete chrysosporium. J Biotechnol 77:235–245

    Article  PubMed  CAS  Google Scholar 

  • Papp-Wallace KM, Maguire ME (2006) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209

    Article  PubMed  CAS  Google Scholar 

  • Parikh SJ, Chorover J (2005) FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1. Geomicrobiol J 22:207–218

    Article  CAS  Google Scholar 

  • Patzer SI, Hantke K (2001) Dual repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter in Escherichia coli. J Bacteriol 183:4806–4813

    Article  PubMed  CAS  Google Scholar 

  • Platero R, Peixoto L, O’Brian MR, Fabiano E (2004) Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti. Appl Environ Microbiol 70:4349–4355

    Article  PubMed  CAS  Google Scholar 

  • Pringsheim EG (1949) The filamentous bacteria Sphaerotilus, Leptothrix, Cladothrix, and their relation to iron and manganese. Phil Trans R Soc Lond 233:453–482

    Article  Google Scholar 

  • Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1468

    Article  PubMed  CAS  Google Scholar 

  • Rassa AC, McAllister SM, Safran SA, Moyer CL (2009) Zeta-proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii. Geomicrobiol J 26:623–638

    Article  CAS  Google Scholar 

  • Richardson LL, Aguilar C, Nealson KH (1988) Manganese oxidation in pH and O2 microenvironments produced by phytoplankton. Limnol Oceanogr 33:352–363

    Article  PubMed  CAS  Google Scholar 

  • Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI (2007) A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol 9:944–953

    Article  PubMed  CAS  Google Scholar 

  • Roitz JS, Flegal AR, Bruland KW (2002) The biogeochemical cycling of manganese in San Francisco Bay: temporal and spatial variations in surface water concentrations. Estuar Coast Shelf Sci 54:227–239

    Article  CAS  Google Scholar 

  • Rosson RA, Nealson KH (1982) Manganese binding and oxidation by spores of a marine Bacillus. J Bacteriol 151:1027–1034

    PubMed  CAS  Google Scholar 

  • Rosson RA, Tebo BM, Nealson KH (1984) The use of poisons in the determination of microbial manganese binding rates in seawater. Appl Environ Microbiol 47:740–745

    PubMed  CAS  Google Scholar 

  • Rusin P, Ehrlich HL (1995) Developments in microbial leaching-mechanisms of manganese solubilization. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology. Springer-Verlag Berlin, Heidelberg, pp 1–26

    Google Scholar 

  • Saager PM, De Baar HJW, Burkill PH (1989) Manganese and iron in Indian Ocean waters. Geochim Cosmochim Acta 53:2259–2267

    Article  CAS  Google Scholar 

  • Schuett C, Zelibor JL Jr, Colwell RR (1986) Role of bacterial plasmids in manganese oxidation: evidence for plasmid-encoded heavy metal resistance. Geomicrobiol J 4:389–406

    Article  CAS  Google Scholar 

  • Schweisfurth R, Eleftheriadis D, Gundlach H, Jacobs M, Jung W (1978) Microbiology of the precipitation of manganese. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology. Ann Arbor Science, Ann Arbor, pp 923–928

    Google Scholar 

  • Shi L (2004) Manganese-dependent protein o-phosphatases in prokaryotes and their biological functions. Front Biosci 9:1382–1397

    Article  PubMed  CAS  Google Scholar 

  • Shock EL (2009) Minerals as energy source for microorganisms. Econ Geol 104:1235–1248

    Article  CAS  Google Scholar 

  • Siering PL, Ghiorse WC (1997a) Development and application of 16S rRNA-targeted probes for detection of iron- and manganese-oxidizing sheathed bacteria in environmental samples. Appl Environ Microbiol 63:644–651

    PubMed  CAS  Google Scholar 

  • Siering PL, Ghiorse WC (1997b) PCR detection of a putative manganese oxidation gene (mofA) in environmental samples and assessment of mofA gene homology among diverse manganese-oxidizing bacteria. Geomicrobiol J 14:109–125

    Article  CAS  Google Scholar 

  • Sly LI, Arunpairojana V, Hodgkinson MC (1988) Pedomicrobium manganicum from drinking-water distribution systems with manganese-related “dirty water” problems. Syst Appl Microbiol 11:75–84

    Google Scholar 

  • Sly LI, Arunpairojana V, Dixon DR (1990) Binding of colloidal MnO2 by extracellular polysaccharides of Pedomicrobium manganicum. Appl Environ Microbiol 56:2791–2794

    PubMed  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  • Spiro TG, Bargar JR, Sposito G, Tebo BM (2010) Bacteriogenic manganese oxides. Acc Chem Res 43:2–9

    Article  PubMed  CAS  Google Scholar 

  • Spratt HG Jr, Hodson RE (1994) The effect of changing water chemistry on rates of manganese oxidation in surface sediments of a temperate saltmarsh and a tropical mangrove estuary. Estuar Coast Shelf Sci 38:119–135

    Article  CAS  Google Scholar 

  • Spratt HG Jr, Siekmann EC, Hodson RE (1994) Microbial manganese oxidation in saltmarsh surface sediments using leuco crystal violet manganese oxide detection technique. Estuar Coast Shelf Sci 38:91–112

    Article  CAS  Google Scholar 

  • Stembal T, Marinko M, Ribicic N, Briski F, Sipos L (2005) Removal of ammonia, iron and manganese from ground waters of Northern Croatia: pilot plant studies. Process Biochem 40:327–335

    Article  CAS  Google Scholar 

  • Stokes JL, Powers MT (1967) Stimulation of polyhydroxybutyrate oxidation in Sphaerotilus discophorus by manganese and magnesium. Arch Microbiol 59:295–301

    CAS  Google Scholar 

  • Stuetz RM, Greene AC, Madgwick JC (1996) The potential use of manganese oxidation in treating metal effluents. Miner Eng 9:1253–1261

    Article  CAS  Google Scholar 

  • Sudek LA, Templeton AS, Tebo BM, Staudigel H (2009) Microbial ecology of Fe (hydr)oxide mats and basaltic rock from Vailulu’u Seamount, American Samoa. Geomicrobiol J 26:581–596

    Article  CAS  Google Scholar 

  • Sujith PP, Khedekar VD, Girish AP, Loka Bharathi PA (2010) Immobilization of nickel by bacterial isolates from the Indian ridge system and the chemical nature of the accumulated metal. Geomicrobiol J 27:424–434

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1987) Microbial oxidation of manganese in a North Carolina estuary. Limnol Oceanogr 32:552–564

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1990) Diel cycles in microbial manganese oxidation and manganese redox speciation in coastal waters of the Bahama Islands. Limnol Oceanogr 35:325–338

    Article  CAS  Google Scholar 

  • Tazaki K (2005) Microbial formation of a halloysite-like mineral. Clays Clay Miner 53:224–233

    Article  CAS  Google Scholar 

  • Tebo BM, Emerson S (1985) The effect of oxygen tension, Mn(II) concentration and temperature on the microbially catalyzed Mn(I1) oxidation rate in a marine fjord. Appl Environ Microbiol 50:1268–1273

    PubMed  CAS  Google Scholar 

  • Tebo BM, Emerson S (1986) Microbial manganese(II) oxidation in the marine environment: a quantitative study. Biogeochemistry 2:149–161

    Article  CAS  Google Scholar 

  • Tebo BM, Nealson KH, Emerson S, Jacobs L (1984) Microbial mediation of Mn(II) and Co(II) precipitation at the O2/H2S interfaces in two anoxic fjords. Limnol Oceanogr 29:1247–1258

    Article  CAS  Google Scholar 

  • Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals. Mineral Soc Am, Washington, DC, pp 225–266

    Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    Article  CAS  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    Article  PubMed  CAS  Google Scholar 

  • Tebo BM, Clement BG, Dick GJ (2007) Biotransformations of manganese. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 1223–1238

    Google Scholar 

  • Templeton A, Knowles E (2009) Microbial transformations of minerals and metals: recent advances in geomicrobiology derived from synchrotron- based X-ray spectroscopy and X-ray microscopy. Annu Rev Earth Planet Sci 37:367–391

    Article  CAS  Google Scholar 

  • Toner B, Manceau A, Webb SM, Sposito G (2006) Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochim Cosmochim Acta 70:27–43

    Article  CAS  Google Scholar 

  • Tottey S, Waldron KJ, Firbank SJ, Reale B, Bessant C, Sato K, Cheek TR, Gray J, Banfield MJ, Dennison C, Robinson NJ (2008) Protein-folding location can regulate manganese binding versus copper- or zinc-binding. Nature 455:1138–1142

    Article  PubMed  CAS  Google Scholar 

  • Trouwborst RE, Clement BG, Tebo BM, Glazer BT, Luther GW (2006) Soluble Mn(III) in suboxic zones. Science 313:1955–1957

    Article  PubMed  CAS  Google Scholar 

  • Tyler PA (1970) Hyphomicrobia and the oxidation of manganese in aquatic ecosystems. Anton Van Leeuwenhoek 36:567–578

    Article  CAS  Google Scholar 

  • Tyler PA, Marshall KC (1967) Microbial oxidation of manganese in hydro-electric pipelines. Anton Van Leeuwenhoek 33:171–183

    Article  CAS  Google Scholar 

  • Uren NC, Leeper GW (1978) Microbial oxidation of divalent manganese. Soil Biol Biochem 10:85–87

    Article  CAS  Google Scholar 

  • van Waasbergen LG, Hoch JA, Tebo BM (1993) Genetic analysis of the marine manganese oxidizing Bacillus sp. strain SG-1: protoplast transformation, Tn917 mutagenesis and identification of chromosomal loci involved in manganese oxidation. J Bacteriol 175:7594–7603

    PubMed  Google Scholar 

  • van Waasbergen LG, Hildebrand M, Tebo BM (1996) Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J Bacteriol 178:3517–3530

    PubMed  Google Scholar 

  • Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649–2662

    Article  CAS  Google Scholar 

  • Villalobos M, Bargar J, Sposito G (2005a) Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environ Sci Technol 39:569–576

    Article  PubMed  CAS  Google Scholar 

  • Villalobos M, Bargar J, Sposito G (2005b) Trace metal retention on biogenic manganese oxide nanoparticles. Elements 1:223–226

    Article  CAS  Google Scholar 

  • Vodyanitskii YN (2009) Mineralogy and geochemistry of manganese: a review of publications. Eurasian Soil Sci 42:1170–1178

    Article  Google Scholar 

  • Vojak PWL, Edwards C, Jones MV (1985) Evidence for microbial manganese oxidation in the River Tamar estuary, South West England. Estuar Coast Shelf Sci 20:661–671

    Article  CAS  Google Scholar 

  • Wang X, Müuller WEG (2009) Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends Biotechnol 27:375–383

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Schloßmacher U, Natalio F, Schröder HC, Wolf SE, Tremel W, Müller WEG (2009a) Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific ocean: implications of biologically induced mineralization. Micron 40:526–535

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Schröder HC, Wiens M, Schloßmacher U, Müller WEG (2009b) Manganese/polymetallic nodules: micro-structural characterization of exolithobiontic- and endolithobiontic microbial biofilms by scanning electron microscopy. Micron 40:350–358

    Article  PubMed  CAS  Google Scholar 

  • Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci USA 102:5558–5563

    Article  PubMed  CAS  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Ehrlich HL (1976) Effect of four heavy metals (Mn, Ni, Cu and Co) on some bacteria from the deep sea. In: Sharpley JM, Kaplan AM (eds) Proceedings of the third international biodegradation symposium. Applied Science Publishers Ltd, London, pp 867–874

    Google Scholar 

  • Yocum CF, Pecoraro V (1999) Recent advances in the understanding of the biological chemistry of manganese. Curr Opin Chem Biol 3:182–187

    Article  PubMed  CAS  Google Scholar 

  • Zajic JE (1969) Microbial biogeochemistry. Academic, New York

    Google Scholar 

  • Zapkin MA, Ehrlich HL (1983) A comparison of manganese oxidation by growing and resting cells of a freshwater bacterial isolate, strain FMn 1. Z Allg Mikrobiol 23:447–455

    Article  PubMed  CAS  Google Scholar 

  • Zhang HC, Huang CH (2003) Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ Sci Technol 37:2421–2430

    Article  PubMed  CAS  Google Scholar 

  • Zhang HC, Huang CH (2005) Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. Environ Sci Technol 39:4474–4483

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Lion LW, Nelson YM, Shuler ML, Ghiorse WC (2002) Kinetics of Mn(II) oxidation by Leptothrix discophora SS1. Geochim Cosmochim Acta 66:773–781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Director, NIO for providing the required facilities to conduct this research work. The work has been carried out under the project “Preliminary exploration of cobalt-rich seamount crusts in the northern Indian Ocean” funded by the Ministry of Earth Sciences (Government of India) lead by Dr. V.K. Banakar. SPP wishes to thank Dr. M.P. Tapaswi for continuous support with required literature for reference and also acknowledges the Council of Scientific and Industrial Research, New Delhi-India, for the award of Senior Research Fellowship. This manuscript has NIO contribution No 5005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Loka Bharathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sujith, P.P., Bharathi, P.A.L. (2011). Manganese Oxidation by Bacteria: Biogeochemical Aspects. In: Müller, W. (eds) Molecular Biomineralization. Progress in Molecular and Subcellular Biology(), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21230-7_3

Download citation

Publish with us

Policies and ethics