Skip to main content

Zoonotic Infections: The Role of Biofilms

  • Chapter
  • First Online:
Biofilms and Veterinary Medicine

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 6))

Abstract

A zoonosis or zoonose is any infectious disease that can be transmitted from non-human animals, both wild and domestic, to humans. Infectious diseases transmitted from humans to non-human animals is sometimes called reverse zoonosis or anthroponosis. Sixty one percent of the pathogens known to affect humans are zoonotic. Biofilm formation is used as a mechanism by zoonotic and environmental pathogens to infect animals and humans. It has been suggested that biofilms are involved in 65–80% of infections treated by doctors in developed countries. Microorganisms can resist extreme temperatures, antibiotic treatments and low levels of nutrients by forming biofilms. Therefore the selection of the right antibiotics to treat human and animal infections caused by biofilms is paramount. It is apparent that more research into biofilm infections in humans and animals, biofilm resistance mechanisms and new strategies for effective treatment need to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnisalo K, Autio T, Sjöberg A-M, Lundén J, Korkeala H, Suihko M-L (2003) Typing of Listeria monocytogenes isolates originating from the food processing industry with automated ribotyping and pulsed-field gel electrophoresis. J Food Prot 66:249–255

    PubMed  CAS  Google Scholar 

  • Acha PN, Szyfres B (2003) Zoonoses and communicable diseases common to man and animals. In: PAHO (ed) Chlamydioses, rickettsioses, and viruses, vol 2, 3rd edn. PAHO, Washington, DC, pp 246–276

    Google Scholar 

  • Adams BL, Bates TC, Oliver JD (2003) Survival of Helicobacter pylori in a natural freshwater environment. Appl Environ Microbiol 69:7462–7466

    PubMed  CAS  Google Scholar 

  • Ahmed KS, Khan AA, Ahmed I, Tiwari SK, Habeed A, Ahi JD, Abid Z, Ahmed N, Habibullah CM (2007) Impact of household hygiene and water source on the prevalence and transmission of Helicobacter pylori: a South Indian perspective. Singapore Med J 48:543–549

    PubMed  CAS  Google Scholar 

  • Alakomi H-L, Kujanpa ÈAÈK, Partanen L, Suihko M-L, Salo S, Siika-Aho M, Saarela M, Mattila-Sandholm T, Raaska L (2002) Microbiological problems in paper machine environments. VTT Research Notes 2152. Otamedia Oy, Espoo

    Google Scholar 

  • Alam M, Sultana M, Nair GB, Siddique AK, Hasan NA, Sack RB, Sack DA, Ahmed KU, Sadique A, Watanabe H, Grim CJ, Huq A, Colwell RR (2007) Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci USA 104:17801–17806

    PubMed  CAS  Google Scholar 

  • Al-Ani FK, Roberson J (2007) Glanders in horses: a review of the literature. Veterinarski Arhiv 77:203–218

    Google Scholar 

  • Allison DG (2003) The biofilm matrix. Biofouling 19:139–150

    PubMed  CAS  Google Scholar 

  • Amieva MR, El-Omar EM (2008) Host–bacterial interactions in Helicobacter pylori infection. Gastroenterology 134:306–323

    PubMed  CAS  Google Scholar 

  • Amorena B, Gracia E, Monzon M, Leiva J, Oteiza C, Perez M, Alabart JL, Hernandez-Yago J (1999) Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 44:43–55

    PubMed  CAS  Google Scholar 

  • Anderson JM, Marchant RE (2000) Biomaterials: factors favoring colonization and infection. In: Waldvogel FA, Bisno AL (eds) Infections associated with indwelling medical devices, 3rd edn. American Society of Microbiology, Washington, DC, pp 89–109

    Google Scholar 

  • Angles ML, Chandy JP, Cox PT, Fisher IH, Warnecke MR (2007) Implications of biofilm-associated waterborne Cryptosporidium oocysts for the water industry. Trends Parasitol 23:352–356

    PubMed  CAS  Google Scholar 

  • Angulo FJ, Tauxe RV, Cohen ML (1999) Significance and sources of antimicrobial-resistant nontyphoidal Salmonella infections in humans in the United States: the need for prudent use of antimicrobial agents, including restricted use of fluoroquinalones, in food animals. http://www.omafra.gov.on.ca/english/livestock/animalcare/amr/facts/angulo.htm. Accessed 14 Sept 2009

  • Appelbaum PC (1992) Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis 15:77–83

    PubMed  CAS  Google Scholar 

  • Arnold JW (1998) Development of bacterial biofilms during poultry processing. Poult Avian Biol Rev 9:1–9

    Google Scholar 

  • Arnold JW, Bailey GW (2000) Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study. Poult Sci 79:1839–1845

    PubMed  CAS  Google Scholar 

  • Arnold JW, Silvers S (2000) Comparison of poultry processing equipment surfaces for susceptibility to bacterial attachment and biofilm formation. Poult Sci 79:1215–1221

    PubMed  CAS  Google Scholar 

  • Arnold JW, Suzuki O (2003) Effects of corrosive treatment on stainless steel surface finishes and bacterial attachment. Trans ASABE 46:1595–1602

    Google Scholar 

  • Asha NJ, Tompkins D, Wilcox MH (2006) Comparative analysis of prevalence, risk factors, and molecular epidemiology of antibiotic-associated diarrhea due to Clostridium difficile, Clostridium perfringens, and Staphylococcus aureus. J Clin Microbiol 44:2785–2791

    PubMed  CAS  Google Scholar 

  • Ashhurst-Smith C, Norton R, Thoreau W, Peel MM (1998) Actinobacillus equuli septicemia: an unusual zoonotic infection. J Clin Microbiol 36:2789–2790

    PubMed  CAS  Google Scholar 

  • Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301

    PubMed  CAS  Google Scholar 

  • Autio T, Hielm S, Miettinen M, Sjöberg A-M, Aarnisalo K, Björkroth J, Mattila-Sandholm T, Korkeala H (1999) Sources of Listeria monocytogenes contamination in a cold-smoked rainbow trout processing plant detected by pulsed-field gel electrophoresis typing. Appl Environ Microbiol 65:150–155

    PubMed  CAS  Google Scholar 

  • Ayele WY, Svastovar P, Roubal P, Bartos M, Pavlik I (2005) Mycobacterium avium subsp. paratuberculosis cultured from locally and commercially pasteurized cow’s milk in the Czech Republic. Appl Environ Microbiol 71:1210–1214

    PubMed  CAS  Google Scholar 

  • Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827

    PubMed  CAS  Google Scholar 

  • Bagge-Ravn D, Ng Y, Hjelm M, Christiansen JN, Johansen C, Gram L (2003) The microbial ecology of processing equipment in different industries – analysis of the microflora during processing and following cleaning and disinfection. Int J Food Microbiol 87:239–250

    PubMed  Google Scholar 

  • Baldassarri L, Creti R, Recchia S, Imperi M, Facinelli B, Giovanetti E, Pataracchia M, Alfarone G, Orefici G (2006) Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol 44:2721–2727

    PubMed  CAS  Google Scholar 

  • Bannoehr J, Ben Zakour NL, Waller AS, Guardabassi L, Thoday KL, van den Broek AH, Fitzgerald JR (2007) Population genetic structure of the Staphylococcus intermedius group: insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol 189:8685–8692

    PubMed  CAS  Google Scholar 

  • Baptiste KE, Williams K, Willams NJ, Wattret A, Clegg PD, Dawson S, Corkill JE, O’Neill T, Hart CA (2005) Methicillin-resistant staphylococci in companion animals. Emerg Infect Dis 11:1942–1944

    PubMed  Google Scholar 

  • Bartram J (2007) Legionella and the prevention of legionellosis. World Health Organization, Geneva

    Google Scholar 

  • Bauman WJ, Nocker A, Jones WL, Camper AK (2009) Retention of a model pathogen in a porous media biofilm. Biofouling 25:229–240

    PubMed  CAS  Google Scholar 

  • Beard PM, Rhind SM, Buxton D, Daniels MJ, Henderson D, Pirie A, Rudge K, Greig A, Hutchings MR, Stevenson K, Sharp JM (2001) Natural paratuberculosis infection in rabbits in Scotland. J Comp Pathol 124:290–299

    PubMed  CAS  Google Scholar 

  • Beenken KE, Blevins JS, Smeltzer MS (2003) Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 71:4206–4211

    PubMed  CAS  Google Scholar 

  • Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684

    PubMed  CAS  Google Scholar 

  • Belley A, Neesham-Grenon E, McKay G, Arhin FF, Harris R, Beveridge T, Parr TR Jr, Moeck G (2009) Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother 53:918–925

    PubMed  CAS  Google Scholar 

  • Beran GW, Steele JH (1994) Handbook of zoonoses: section A. Bacterial, rickettsial, chlamydial, and mycotic. CRC, Boca Raton, FL

    Google Scholar 

  • Berk SG, Ting RS, Turner GW, Ashburn RJ (1998) Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp. Appl Environ Microbiol 64:279–286

    PubMed  CAS  Google Scholar 

  • Bernbom N, Jørgensen RL, Ng YY, Meyer RL, Kingshott P, Vejborg RM, Klemm P, Besenbacher F, Gram L (2006) Bacterial adhesion to stainless steel is reduced by aqueous fish extract coatings. Biofilms 3:25–36

    Google Scholar 

  • Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558

    PubMed  Google Scholar 

  • Bjerklie S (2003) Controlling biofilms and controlling Listeria. Meat Process 26–33

    Google Scholar 

  • Blackman IC, Frank JF (1996) Growth of Listeria monocytogenes as a biofilm an various food-processing surfaces. J Food Prot 59:827–831

    Google Scholar 

  • Boerlin P, Eugster S, Gaschen F, Straub R, Schawalder P (2001) Transmission of opportunistic pathogens in a veterinary teaching hospital. Vet Microbiol 82:347–359

    PubMed  CAS  Google Scholar 

  • Booij-Vrieling HE, van der Reijden WA, Houwers DJ, de Wit WE, Bosch-Tijhof CJ, Penning LC, van Winkelhoff AJ, Hazewinkel HA (2010) Comparison of periodontal pathogens between cats and their owners. Vet Microbiol 144:147–152

    PubMed  CAS  Google Scholar 

  • Boost MV, O’Donoghue MM, Siu KH (2007) Characterisation of methicillin-resistant Staphylococcus aureus isolates from dogs and their owners. Clin Microbiol Infect 13:731–733

    PubMed  CAS  Google Scholar 

  • Borucki MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69:7336–7342

    PubMed  CAS  Google Scholar 

  • Boyle N, Bishop JL, Grass GA, Finlay BB (2007) Meeting review Salmonella: from pathogenesis to therapeutics. J Bacteriol 189:1489–1495

    PubMed  CAS  Google Scholar 

  • Boyle-Vavra S, Ereshefsky B, Wang C-C, Daum RS (2005) Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei, Taiwan, that carries either the novel staphylococcal chromosome cassette mec (SCCmec) type VT or SCCmec type IV. J Clin Microbiol 43:4719–4730

    PubMed  CAS  Google Scholar 

  • Bradshaw DJ, Marsh PD (1999) Use of continuous flow techniques in modeling dental plaque biofilms. Methods Enzymol 310:279–296

    PubMed  CAS  Google Scholar 

  • Bradshaw DJ, Marsh PD, Allison C, Schilling KM (1996) Effect of oxygen, inoculum composition and flow rate on development of mixed-culture oral biofilms. Microbiology 142:623–629

    PubMed  CAS  Google Scholar 

  • Brandonisio O (2006) Waterborne transmission of Giardia and Cryptosporidium. Parassitologia 48:91–94

    PubMed  CAS  Google Scholar 

  • Bryers J (ed) (2000) Process analysis and applications. Wiley, New York

    Google Scholar 

  • Bull TJ, McMinn EJ, Sidi-Boumedine K, Skull A, Durkin D, Neild P, Rhodes G, Pickup R, Hermon-Taylor J (2003) Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn’s disease. J Clin Microbiol 41:2915–2923

    PubMed  CAS  Google Scholar 

  • Carman RJ, Sayeed S, Li J, Genheimer CW, Hiltonsmith MF, Wilkins TD, McClane BA (2008) Clostridium perfringens toxin genotypes in the feces of healthy North Americans. Anaerobe 14:102–108

    PubMed  CAS  Google Scholar 

  • Carpentier B, Chassaing D (2004) Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int J Food Microbiol 97:111–122

    PubMed  CAS  Google Scholar 

  • Carron MA, Tran VR, Sugawa C, Coticchia JM (2006) Identification of Helicobacter pylori biofilms in human gastric mucosa. J Gastrointest Surg 10:712–717

    PubMed  Google Scholar 

  • Carter G, Wu M, Drummond DC, Bermudez LE (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52:747–752

    PubMed  CAS  Google Scholar 

  • CDC (2008) Salmonellosis. CDC, Atlanta, GA. http://www.cdc.gov/nczved/dfbmd/disease_listing/salmonellosis_gi.html. Accessed 14 Sept 2009

  • Chaieb K, Mahdouani K, Bakhrouf A (2005) Detection of icaA and icaD loci by polymerase chain reaction and biofilm formation by Staphylococcus epidermidis isolated from dialysate and needles in a dialysis unit. J Hosp Infect 61:225–230

    PubMed  CAS  Google Scholar 

  • Chandra J, Ghannoum A (2004) Fungal biofilms. In: Ghannoum M, O’Toole GA (eds) Microbial biofilms. ASM, Washington, DC, pp 30–42

    Google Scholar 

  • Chemlal K, Huys G, Laval F, Vincent V, Savage C, Gutierrez C, Laneelle M-A, Swings J, Meyers WM, Daffe M, Portaels F (2002) Characterization of an unusual mycobacterium: a possible missing link between Mycobacterium marinum and Mycobacterium ulcerans. J Clin Microbiol 40:2370–2380

    PubMed  CAS  Google Scholar 

  • Cheng HW, Lucy FE, Graczyk TK, Broaders MA, Tamang L, Connolly M (2009) Fate of Cryptosporidium parvum and Cryptosporidium hominis oocysts and Giardia duodenalis cysts during secondary wastewater treatments. Parasitol Res 105:689–696

    PubMed  Google Scholar 

  • Clifton-Hadley FA (1983) Zoonoses in practice–Streptococcus suis type 2 infection. Br Vet J 139:1–5

    PubMed  CAS  Google Scholar 

  • Cloete TE, Smith F, Steyn PL (1989) The use of planktonic bacterial populations in open and closed recirculating water cooling systems for the evaluation of biocides. Int Biodeterior 25:115–122

    CAS  Google Scholar 

  • Clutterbuck AL, Woods EJ, Knottenbelt DC, Clegg PD, Cochrane CA, Percival SL (2007) Biofilms and their relevance to veterinary medicine. Vet Microbiol 121:1–17

    PubMed  CAS  Google Scholar 

  • Cochrane CA, Freeman K, Woods E, Welsby S, Percival SL (2009) Biofilm evidence and the microbial diversity of horse wounds. Can J Microbiol 55:197–202

    PubMed  Google Scholar 

  • Cole SP, Harwood J, Lee R, She R, Guiney DG (2004) Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol 186:3124–3132

    PubMed  CAS  Google Scholar 

  • Committee on Indicators for Waterborne Pathogens (CB) (2004) Indicators for waterborne pathogens. National Academies, Washington, DC

    Google Scholar 

  • Cook KL, Britt JS, Bolster CH (2010) Survival of Mycobacterium avium subsp. paratuberculosis in biofilms on livestock watering trough materials. Vet Microbiol 141:103–109

    PubMed  CAS  Google Scholar 

  • Corpe WA (1980) Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp 105–144

    Google Scholar 

  • Costerton JW, Marrie TJ, Cheng K-J (1985) Phenomena of bacterial adhesion. In: Savage DC, Fletcher M (eds) Bacterial adhesion: mechanisms and physiological significance. Plenum, New York, pp 650–654

    Google Scholar 

  • Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE (1994) Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 38:2803–2809

    PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    PubMed  CAS  Google Scholar 

  • Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477

    PubMed  CAS  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Cotz F (1999) The intercellular adhesion (ica) locas is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    PubMed  CAS  Google Scholar 

  • Crawford RW, Gibson DL, Kay WW, Gunn JS (2008) Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect Immun 76:5341–5349

    PubMed  CAS  Google Scholar 

  • Criado M-T, Suarez B, Ferreio CM (1994) The importance of bacterial adhesion in the dairy industry. Food Technol 48:123–126

    Google Scholar 

  • Croft AC, D’Antoni AV, Terzulli SL (2007) Update on the antibacterial resistance crisis. Med Sci Monit 13:103–118

    Google Scholar 

  • Crump JA, Sulka AC, Langer AJ, Schaben C, Crielly AS, Gage R, Baysinger M, Moll M, Withers G, Toney DM, Hunter SB, Hoekstra RM, Wong SK, Griffin PM, Van Gilder TJ (2002) An outbreak of Escherichia coli O157:H7 infections among visitors to a dairy farm. N Engl J Med 347:555–560

    PubMed  Google Scholar 

  • Cucarella C, Tormo MA, Ubeda C, Trotonda MP, Monzon M, Peris C, Amorena B, Lasa I, Penades JR (2004) Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun 72:2177–2185

    PubMed  CAS  Google Scholar 

  • Cvitkovitch DG, Yung-Hua L, Richard PE (2003) Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112:1626–1632

    PubMed  CAS  Google Scholar 

  • D’Mello JPF (2003) Food safety. CABI, Wallingford

    Google Scholar 

  • Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567–1572

    PubMed  CAS  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    PubMed  CAS  Google Scholar 

  • Declerck P (2010) Biofilms: the environmental playground of Legionella pneumophila. Environ Microbiol 12:557–566

    PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, Delaedt Y, Margineanu A, Lammertyn E, Ollevier F (2005) Impact of non-Legionella bacteria on the uptake and intracellular replication of Legionella pneumophila in Acanthamoeba castellanii and Naegleria lovaniensis. Microb Ecol 50:536–549

    PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, van Hoef V, Ollevier F (2007) Detection of Legionella pneumophila and some of its amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41:3159–3167

    PubMed  CAS  Google Scholar 

  • Demangel C, Stinear TP, Cole ST (2009) Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol 7:50–60

    PubMed  CAS  Google Scholar 

  • Demers B, Simor AE, Vellend H, Schlievert PM, Byrne S, Jamieson F, Walmsley S, Low DE (1993) Severe invasive group A streptococcal infections in Ontario, Canada: 1987–1991; editorial response by DL Stevens. Clin Infect Dis 16:792–802

    PubMed  CAS  Google Scholar 

  • Dhir VK, Dodd CER (1995) Susceptibility of suspended and surface-attached Salmonella enteritidis to biocides and elevated temperatures. Appl Environ Microbiol 61:1731–1738

    PubMed  CAS  Google Scholar 

  • Dimola S, Caruso ML (1999) Helicobacter pylori in animals affecting the human habitat through the food chain. Anticancer Res 19:3889–3894

    PubMed  CAS  Google Scholar 

  • Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    PubMed  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    PubMed  CAS  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    PubMed  CAS  Google Scholar 

  • Drexler M (2002) Secret agents: the menace of emerging infections. Joseph Henry, Washington, DC

    Google Scholar 

  • du Moulin GC, Stottmeier KD, Pelletier PA, Tsang AY, Hedley-Whyte J (1988) Concentration of Mycobacterium avium by hospital hot water systems. JAMA 260:1599–1601

    PubMed  Google Scholar 

  • Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353

    PubMed  CAS  Google Scholar 

  • Dykes GA, Sampathkumar B, Korber DR (2003) Planktonic or biofilm growth effects survival, hydrophobicity and protein expression patterns of a pathogenic Campylobacter jejuni strain. Int J Food Microbiol 89:1–10

    PubMed  CAS  Google Scholar 

  • Eisen RJ, Wilder AP, Bearden SW, Montenieri JA, Gage KL (2007) Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas. J Med Entomol 44:678–682

    PubMed  Google Scholar 

  • Eklund MW, Poysky FT, Paranjpye RN, Lashbrook LC, Peterson ME, Pelroy GA (1995) Incidence and sources of Listeria monocytogenes in cold-smoked fishery products and processing plants. J Food Prot 58:502–508

    Google Scholar 

  • Epstein CR, Yama WC, Peiris JSM, Epstein RJ (2009) Methicillin-resistant commensal staphylococci in healthy dogs as a potential zoonotic reservoir for community-acquired antibiotic resistance. Infect Genet Evol 9:283–285

    PubMed  CAS  Google Scholar 

  • Esteves CL, Jones BD, Clegg S (2005) Biofilm formation by Salmonella enterica serovar typhimurium and Escherichia coli on epithelial cells following mixed inoculations. Infect Immun 73:5198–5203

    PubMed  CAS  Google Scholar 

  • Falkinham JO III (1996) Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 9:177–215

    PubMed  Google Scholar 

  • Falkinham JO III, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67:1225–1231

    PubMed  CAS  Google Scholar 

  • Falkinham JO, Nichols G, Bartram J, Dufour A, Portaels F (2004) Natural ecology and survival in water of mycobacteria of potential public health significance. In: Bartram J (ed) Pathogenic mycobacteria in water: a guide to public health consequences, monitoring and management. World Health Organization, Albany, NY

    Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    PubMed  CAS  Google Scholar 

  • Fardini Y, Chung P, Dumm R, Joshi N, Han YW (2010) Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect Immun 78:1789–1796

    PubMed  CAS  Google Scholar 

  • Fazakerley C, Pryor M, Percival SL (2001) The isolation of Mycobacterium spp. from groundwater, chlorinated distribution systems and biofilms. In: Gilbert PG, Allison D, Walker JT, Brading M (eds) Biofilm community interactions: chance or necessity? Bioline, Cardiff, pp 53–57

    Google Scholar 

  • Ferenci P (2000) The importance of Helicobacter – also beyond the stomach. Acta Med Aust 27:109–111

    CAS  Google Scholar 

  • Fittipaldi N, Gottschalk M, Vanier G, Daigle F, Harel J (2007) Use of selective capture of transcribed sequences to identify genes preferentially expressed by Streptococcus suis upon interaction with porcine brain microvascular endothelial cells. Appl Environ Microbiol 73:4359–4364

    PubMed  CAS  Google Scholar 

  • Fitzpatrick F, Humphreys H, O’Gara JP (2005) Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol 43:1973–1976

    PubMed  CAS  Google Scholar 

  • Fox LK, Zadoks RN, Gaskins CT (2005) Biofilm production by Staphylococcus aureus associated with intramammary infection. Vet Microbiol 107:295–299

    PubMed  CAS  Google Scholar 

  • Futagawa-Saito K, Ba-Thein W, Sakurai N, Fukuyasu T (2006) Prevalence of virulence factors in Staphylococcus intermedius isolates from dogs and pigeons. BMC Vet Res 2:4

    PubMed  Google Scholar 

  • Galanis E, Lo Fo Wong DM, Patrick ME, Binsztein N, Cieslik A, Chalermchikit T, Aidara-Kane A, Ellis A, Angulo FJ, Wegener HC, World Health Organization Global Salm-Surv (2006) Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg Infect Dis 12:381–388

    PubMed  Google Scholar 

  • Galuppo LD, Pascoe JR, Jang SS, Willits NH, Greenman SL (1999) Evaluation of iodophor skin preparation techniques and factors influencing drainage from ventral midline incisions in horses. J Am Vet Med Assoc 215:963–969

    PubMed  CAS  Google Scholar 

  • Gauthier DT, Rhodes MW (2009) Mycobacteriosis in fishes: a review. Vet J 180:33–47

    PubMed  Google Scholar 

  • Gaynor EC, Wells DH, MacKichan JK, Falkow S (2005) The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol 56:8–27

    PubMed  CAS  Google Scholar 

  • Gerald BL (2009) Foodborne-illness causing pathogens. In: Edelstein S (ed) Food and nutrition at risk in America, Chap. 2. Jones and Barlett, Sudbury, MA

  • Ghannoum MA, O’Toole GA (2004) Microbial biofilms. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW (2008) Persistence of Helicobacter pylori in heterotrophic drinking-water biofilms. Appl Environ Microbiol 74:5898–5904

    PubMed  Google Scholar 

  • Gibson H, Taylor JH, Hall KE, Holah JT (1999) Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J Appl Microbiol 87:41–48

    PubMed  CAS  Google Scholar 

  • Giron JA, Torres AG, Freer E, Kaper JB (2002) The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol 44:361–379

    PubMed  CAS  Google Scholar 

  • Goldsworthy MJH (2008) Gene expression of Pseudomonas aeruginosa and MRSA within a catheter-associated urinary tract infection biofilm model. Biosci Horiz 1:28–37

    Google Scholar 

  • Goodman KJ, Correa P, Tengana AJ, Ramírez H, DeLany JP, Pepinosa OG, Quiñones ML, Parra TC (1996) Helicobacter pylori infection in the Colombian Andes: a population-based study of transmission pathways. Am J Epidemiol 144:290–299

    PubMed  CAS  Google Scholar 

  • Grant IR, Ball HJ, Rowe MT (2002) Incidence of Mycobacterium paratuberculosis in bulk raw and commercially pasteurized cows’ milk from approved dairy processing establishments in the United Kingdom. Appl Environ Microbiol 68:2428–2435

    PubMed  CAS  Google Scholar 

  • Greene CE, Gunn-Moore DA (1990) Mycobacterial infections. In: Green CE (ed) Infectious diseases of the dog and cat, 2nd edn. WB Saunders, Philadelphia, pp 313–315

    Google Scholar 

  • Grenier D, Grignon L, Gottschalk M (2009) Characterisation of biofilm formation by a Streptococcus suis meningitis isolate. Vet J 179:292–295

    PubMed  CAS  Google Scholar 

  • Gresham HD, Lowrance JH, Caver TE, Wilson BS, Cheung AL, Lindberg FP (2000) Survival of Staphylococcus aureus inside neutrophils contributes to infection. J Immunol 164:3713–3722

    PubMed  CAS  Google Scholar 

  • Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17:413–433

    PubMed  Google Scholar 

  • Griffiths MW (2003) Listeria. In: Caballero B, Trugo LC, Finglas PM (eds) Encyclopedia of food sciences and nutrition, vol 6. Academic Press, London, pp 3562–3573

    Google Scholar 

  • Grübel P, Hoffman JS, Chong FK, Burstein NA, Mepani C, Cave DR (1997) Vector potential of houseflies (Musca domestica) for Helicobacter pylori. J Clin Microbiol 35:1300–1303

    PubMed  Google Scholar 

  • Guardabassi L, Schwarz S, Lloyd DH (2004) Pet animals as reservoirs of antimicrobial resistant bacteria. J Antimicrob Chemother 54:321–332

    PubMed  CAS  Google Scholar 

  • Guerrieri E, Bondi M, Sabia C, de Niederhäusern S, Borella P, Messi P (2008) Effect of bacterial interference on biofilm development by Legionella pneumophila. Curr Microbiol 57:532–536

    PubMed  CAS  Google Scholar 

  • Gunduz GT, Tuncel G (2006) Biofilm formation in an ice cream plant. Antonie Leeuwenhoek 89:329–336

    PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13:7–10

    PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    PubMed  CAS  Google Scholar 

  • Hansen SK, Rainey PB, Haagensen JA, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536

    PubMed  CAS  Google Scholar 

  • Hawser S, Islam K (1999) Comparisons of the effects of fungicidal and fungistatic antifungal agents on the morphogenetic transformation of Candida albicans. J Antimicrob Chemother 43:411–413

    PubMed  CAS  Google Scholar 

  • Hefford MA, D’Aoust S, Cyr TD, Austin JW, Sanders G, Kheradpir E, Kalmokoff ML (2005) Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes. Can J Microbiol 51:197–208

    PubMed  CAS  Google Scholar 

  • Heitman TL, Frederick LM, Viste JR, Guselle NJ, Morgan UM, Thompson RC, Olson M (2002) Prevalence of Giardia and Cryptosporidium and characterization of Cryptosporidium spp. isolated from wildlife, human, and agricultural sources in the North Saskatchewan River Basin in Alberta, Canada. Can J Microbiol 48:530–541

    PubMed  CAS  Google Scholar 

  • Helmi K, Skraber S, Gantzer C, Willame R, Hoffmann L, Cauchie HM (2008) Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages phiX174 and MS2 with a drinking water biofilm and a wastewater biofilm. Appl Environ Microbiol 74:2079–2088

    PubMed  CAS  Google Scholar 

  • Herikstad H, Motarjemi Y, Tauxe RV (2002) Salmonella surveillance: a global survey of public health serotyping. Epidemiol Infect 129:1–8

    PubMed  CAS  Google Scholar 

  • Hermon-Taylor J, Bull TJ, Sheridan JM, Cheng J, Stellakis ML, Sumar N (2000) Causation of Crohn’s disease by Mycobacterium avium subspecies paratuberculosis. Can J Gastroenterol 14:521–539

    PubMed  CAS  Google Scholar 

  • Hernandez-Divers SJ, Shearer D (2002) Pulmonary mycobacteriosis caused by Mycobacterium haemophilum and M. marinum in a royal python. J Am Vet Med Assoc 220:1661–1663

    PubMed  Google Scholar 

  • Hirsh DC, Birbenstein EL (2004) Clostridium. In: Hirsh DC, Maclachlan NJ, Walker RL (eds) Veterinary microbiology, Chap. 36. Blackwell, Oxford

    Google Scholar 

  • Howe AD, Forster S, Morton S, Marshall R, Osborn KS, Wright P, Hunter PR (2002) Cryptosporidium oocysts in a water supply associated with a cryptosporidiosis outbreak. Emerg Infect Dis 8:619–624

    PubMed  Google Scholar 

  • Huang YT, Teng LJ, Ho SW, Hsueh PR (2005) Streptococcus suis infection. J Microbiol Immunol Infect 38:306–313

    PubMed  Google Scholar 

  • Hui AC, Ng KC, Tong PY, Mok V, Chow KM, Wu A, Wong LK (2005) Bacterial meningitis in Hong Kong: 10-years’ experience. Clin Neurol Neurosurg 107:366–370

    PubMed  CAS  Google Scholar 

  • Hume RD, Hann WD (1984) Growth relationships of Legionella pneumophila with green algae (Chlorophyta). In: Thornsberry C, Balows A, Feely JC, Jakubowski W (eds) Legionellae. Proceedings of the 2nd international symposium. American Society for Microbiology, Washington, DC, pp 323–324

    Google Scholar 

  • Humphrey T, Mason M, Martin K (1995) The isolation of Campylobacter jejuni from contaminated surfaces and its survival in diluents. Int J Food Microbiol 26:295–303

    PubMed  CAS  Google Scholar 

  • Husu JR, Seppänen JT, Sivelä SK, Rauramaa AL (1990) Contamination of raw milk by Listeria monocytogenes on dairy farms. J Vet Med 37:268–275

    CAS  Google Scholar 

  • ICMSF (1996) Microorganisms in foods, vol. 5. Characteristics of microbial pathogens. Blackie Academic and Professional, London

    Google Scholar 

  • Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190:783–792

    PubMed  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    PubMed  CAS  Google Scholar 

  • Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyse the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49:2467–2473

    PubMed  CAS  Google Scholar 

  • Jemili-Ben Jomaa M, Boutiba-Ben Boubaker I, Ben Redjeb S (2006) Identification of staphylococcal cassette chromosome mec encoding methicillin resistance in Staphylococcus aureus isolates at Charles Nicolle Hospital of Tunis. Pathol Biol 54:453–455

    PubMed  CAS  Google Scholar 

  • Jennings SS, Moran AP, Carroll CV (2003) Bioaerosols and biofilms. In: Lens P, Moran AP, Mahony T, Stoodley P, O’Flaherty V (eds) Biofilms in medicine, industry and environmental biotechnology. IWA, London, pp 160–178

    Google Scholar 

  • Johansen TB, Agdestein A, Olsen I, Nilsen SF, Holstad G, Djønne B (2009) Biofilm formation by Mycobacterium avium isolates originating from humans, swine and birds. BMC Microbiol 9:159

    PubMed  Google Scholar 

  • Joshua GWP, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396

    PubMed  CAS  Google Scholar 

  • Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188:4312–4320

    PubMed  CAS  Google Scholar 

  • Kandulski A, Selgrad M, Malfertheiner P (2008) Helicobacter pylori infection: a clinical overview. Digest Liver Dis 40:619–626

    CAS  Google Scholar 

  • Karlsson A, Arvidson S (2002) Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protease repressor sarA. Infect Immun 70:4239–4246

    PubMed  CAS  Google Scholar 

  • Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater 8:37–57

    CAS  Google Scholar 

  • Keevil CW (2003) Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol 47:105–116

    PubMed  CAS  Google Scholar 

  • Kent ML, Whipps CM, Mathews JL, Florio D, Watral V, Bishop-Stewart JK, Poort M, Bermudez L (2004) Mycobacteriosis in zebrafish (Danio rerio) research facilities. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 138:383–390

    Google Scholar 

  • Khoury AE, Lam K, Ellis BD, Costerton JW (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38:174–178

    Google Scholar 

  • Kiehn TE, White M (1994) Mycobacterium haemophilum: an emerging pathogen. Eur J Clin Microbiol Infect Dis 13:925–931

    PubMed  CAS  Google Scholar 

  • Kim TJ, Young BM, Young GM (2008) Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl Environ Microbiol 74:5466–5474

    PubMed  CAS  Google Scholar 

  • Kite P, Eastwood K, Sugden S, Percival SL (2004) Use of in vivo-generated biofilms from hemodialysis catheters to test the efficacy of a novel antimicrobial catheter lock for biofilm eradication in vitro. J Clin Microbiol 42:3073–3076

    PubMed  CAS  Google Scholar 

  • Klausen M, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68

    PubMed  CAS  Google Scholar 

  • Klayman BJ, Volden PA, Stewart PS, Camper AK (2009) Escherichia coli O157:H7 requires colonizing partner to adhere and persist in a capillary flow cell. Environ Sci Technol 43:2105–2111

    PubMed  CAS  Google Scholar 

  • Klemm P, Schembri M (2004) Type 1 fimbriae, curli, and antigen 43: adhesion, colonization, and biofilm formation. In: Curtiss R III et al (eds) EcoSal – Escherichia coli and Salmonella: cellular and molecular biology. ASM, Washington, DC

    Google Scholar 

  • Klingenberg C, Glad GT, Olsvik R, Flaegstad T (2001) Rapid PCR detection of the methicillin resistance gene, mecA, on the hands of medical and non-medical personnel and healthy children and on surfaces in a neonatal intensive care unit. Scand J Infect Dis 33:494–497

    PubMed  CAS  Google Scholar 

  • Knulst JC, Rosenberger D, Thompson B, Paatero J (2003) Intensive sea surface microlayer investigations of open leads in the pack ice during Arctic Ocean 2001 expedition. Langmuir 19:10194–10199

    CAS  Google Scholar 

  • Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267

    PubMed  Google Scholar 

  • Konishi K, Saito N, Shoji E, Takeda H, Kato M, Asaka M, Ooi HK (2007) Helicobacter pylori: longer survival in deep ground water and sea water than in a nutrient-rich environment. APMIS 115:1285–1291

    PubMed  Google Scholar 

  • Korber DR, Lawrence JR, Sutton B, Caldwell DE (1989) Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot Pseudomonas fluorescens. Microb Ecol 18:1–19

    Google Scholar 

  • Krauss H, Weber A, Appel M, Enders B, Schiefer HG, Slenczka W, Zahner H (2003) Zoonoses: infectious diseases transmissible from animals to humans, 3rd edn. ASM, Washington, DC

    Google Scholar 

  • Krepsky N, Rocha Ferreira RB, Ferreira Nunes AP, Casado Lins UG, Costa e Silva Filho F, de Mattos-Guaraldi AL, Netto-dosSantos KR (2003) Cell surface hydrophobicity and slime production of Staphylococcus epidermidis Brazilian isolates. Curr Microbiol 46:280–286

    PubMed  CAS  Google Scholar 

  • Krysinski EP, Brown LJ, Marchisello TJ (1992) Effect of cleaners and sanitizers on Listeria monocytogenes attached to product contact surfaces. J Food Prot 55:246–251

    CAS  Google Scholar 

  • Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA (2002) Comparison of biofilm formation Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888

    PubMed  CAS  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    PubMed  CAS  Google Scholar 

  • Kumon H (2000) Management of biofilm infections in the urinary tract. World J Surg 24:1193–1196

    PubMed  CAS  Google Scholar 

  • Kusamaningrum HD, Riboldi G, Hazeleger WC, Beumer RR (2003) Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int J Food Microbiol 85:227–236

    Google Scholar 

  • Lai CW, Chan RC, Cheng AF, Sung JY, Leung JW (1992) Common bile duct stones: a cause of chronic salmonellosis. Am J Gastroenterol 87:1198–1199

    PubMed  CAS  Google Scholar 

  • Lallier R, Higgins R (1988) Biochemical and toxigenic characteristics of Aeromonas spp. isolated from diseased mammals, moribund and healthy fish. Vet Microbiol 18:63–71

    PubMed  CAS  Google Scholar 

  • Lambe DW Jr, Fergeson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW (1991) Foreign-body-associated experimental osteomyelitis induced with Bacteroides fragilis and Staphylococcus epidermidis in rabbits. Clin Orthop Relat Res 266:285–294

    PubMed  Google Scholar 

  • Langeveld LPM, Van Montfort-Quasig RMGE, Weerkamp AH, Waalewijn R, Wever JS (1995) Adherence, growth and release of bacteria in a tube heat exchanger for milk. Neth Milk Dairy J 49:207–220

    Google Scholar 

  • Langsrud S, Sidhu MS, Heir E, Holck AL (2003) Bacterial disinfectant resistance – a challenge for the food industry. Int Biodeterior Biodegrad 51:283–290

    CAS  Google Scholar 

  • Lebeer S, Verhoeven TL, Perea Vélez M, Vanderleyden J, De Keersmaecker SC (2007) Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:6768–6775

    PubMed  CAS  Google Scholar 

  • Lee YK, Lim CY, Teng WL, Ouwehand AC, Tuomola EM, Salminen S (2000) Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with Enterobacteria. Appl Environ Microbiol 66:3692–3697

    PubMed  CAS  Google Scholar 

  • Lelieveld H (ed) (2005) Improving hygiene in the food industry. Woodhead, Cambridge

    Google Scholar 

  • Lelieveld H, Mostert T, White B (2001) Hygiene in food processing: principles and practice. Woodhead, Cambridge

    Google Scholar 

  • Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Antibiofilm activity of nanosized magnesium fluoride. Biomaterials 30:5969–5978

    PubMed  CAS  Google Scholar 

  • Leriche V, Carpentier B (1995) Viable but nonculturable Salmonella typhimurium in singleand binary-species biofilms in response to chlorine treatment. J Food Prot 58:1186–1191

    Google Scholar 

  • Leuckfeld I, Paster BJ, Kristoffersen AK, Olsen I (2010) Diversity of Veillonella spp. from subgingival plaque by polyphasic approach. APMIS 118:230–242

    PubMed  CAS  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104:11197–11202

    PubMed  CAS  Google Scholar 

  • Lun ZR, Wang QP, Chen XG, Li AX, Zhu XQ (2007) Streptococcus suis: an emerging zoonotic pathogen. Lancet Infect Dis 7:201–209

    PubMed  Google Scholar 

  • Lundén J (2004) Persistent Listeria monocytogenes contamination in food processing plants. Academic dissertation, Faculty of Veternary, University of Helsinki. Yliopistopaino, Helsinki

    Google Scholar 

  • Lundén JM, Autio TJ, Korkeala HJ (2002) Transfer of persistent Listeria monocytogenes contamination between food-processing plants associated with a dicing machine. J Food Prot 65:1129–1133

    PubMed  Google Scholar 

  • Lundén J, Autio T, Markkula A, Hellström S, Korkeala H (2003) Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants. Int J Food Microbiol 82:265–272

    PubMed  Google Scholar 

  • Lynch AS, Robertson GT (2008) Bacterial and fungal biofilm infections. Annu Rev Med 59:415–428

    PubMed  CAS  Google Scholar 

  • Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CE, Williams P (2002) The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4:18–28

    PubMed  CAS  Google Scholar 

  • Lyytikäinen O, Autio T, Maijala R, Ruutu P, Honkanen-Buzalski T, Miettinen M, Hatakka M, Mikkola J, Anttila VJ, Johansson T, Rantala L, Aalto T, Korkeala H, Siitonen A (2000) An outbreak of Listeria monocytogenes serotype 3a from butter in Finland. J Infect Dis 181:1838–1841

    PubMed  Google Scholar 

  • Malik S, Coombs GW, O’Brien FG, Peng H, Barton MD (2006) Molecular typing of methicillin-resistant staphylococci isolated from cats and dogs. J Antimicrob Chemother 58:428–431

    PubMed  CAS  Google Scholar 

  • Marrie TJ, Nelligan J, Costerton JW (1982) A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66:1339–1342

    PubMed  CAS  Google Scholar 

  • Marriott N (1999) Principles of food sanitation, 4th edn. Aspen, Gaithersburg, MD

    Google Scholar 

  • Marshall K (2003) Fungal diseases in small mammals: therapeutic trends and zoonotic considerations. Vet Clin North Am Exot Anim Pract 6:415–427

    PubMed  Google Scholar 

  • Marsollier L, Robert R, Aubry J, Saint Andre JP, Kouakou H, Legras P, Manceau AL, Mahaza C, Carbonnelle B (2002) Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol 68:4623–4628

    PubMed  Google Scholar 

  • Marsollier L, Aubry J, Coutanceau E, André JP, Small PL, Milon G, Legras P, Guadagnini S, Carbonnelle B, Cole ST (2005) Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone. Cell Microbiol 7:935–943

    PubMed  CAS  Google Scholar 

  • Mashiba K, Hamamoto T, Torikai K (1993) A case of Legionnaires’ disease due to aspiration of hot spring water and isolation of Legionella pneumophila from hot spring water. Kansenshogaku Zasshi 67:163–166

    PubMed  CAS  Google Scholar 

  • McBain AJ (2009) Chapter 4: in vitro biofilm models: an overview. Adv Appl Microbiol 69:99–132

    PubMed  CAS  Google Scholar 

  • McKay GA, Fadhil I, Beaulieu S, Ciblat S, Far AR, Moeck G, Parr TR Jr (2006) Oritavancin disrupts transmembrane potential and membrane integrity concomitantly with cell killing in Staphylococcus aureus and vancomycin-resistant enterococci, abstract C1–682. Abstract of the 46th Interscience conference on antimicrobial agents and chemother, San Francisco, CA, 27–30 Sept 2006

    Google Scholar 

  • McKenney D, Hubner J, Muller E, Wang Y, Goldmann DA, Pier GB (1998) The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66:4711–4720

    PubMed  CAS  Google Scholar 

  • Mead G (ed) (2005) Food safety control in the poultry industry. Woodhead, Cambridge

    Google Scholar 

  • Meining A, Kroher G, Stolte M (1998) Animal reservoirs in the transmission of Helicobacter heilmannii – results of a questionnaire-based study. Scand J Gastroenterol 33:795–798

    PubMed  CAS  Google Scholar 

  • Melchior MB, Fink-Gremmels J, Gaastra W (2006a) Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture. J Vet Med B Infect Dis Vet Pub Health 53:326–332

    CAS  Google Scholar 

  • Melchior MB, Vaarkamp H, Fink-Gremmels J (2006b) Biofilms: a role in recurrent mastitis infections? Vet J 171:398–407

    PubMed  CAS  Google Scholar 

  • Mendez M, Huang IH, Ohtani K, Grau R, Shimizu T, Sarker MR (2008) Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J Bacteriol 190:48–60

    PubMed  CAS  Google Scholar 

  • Mention K, Michaud L, Guimber D, DeLasalle EM, Vincent P, Turck D, Gottrand F (1999) Characteristics and prevalence of Helicobacter heilmannii infection in children undergoing upper gastrointestinal endoscopy. J Pediatr Gastroenterol Nutr 29:533–539

    PubMed  CAS  Google Scholar 

  • Meyer B (2003) Approaches to prevention, removal and killing of biofilms. Int Biodeterior Biodegrad 51:249–253

    CAS  Google Scholar 

  • Miettinen H, Wirtanen G (2006) Ecology of Listeria spp. in a fish farm and molecular typing of L. monocytogenes from fish farming and processing companies. Int J Food Microbiol 112:138–146

    PubMed  CAS  Google Scholar 

  • Miettinen MK, Björkroth KJ, Korkeala HJ (1999) Characterization of Listeria monocytogenes from an ice-cream plant by serotyping and pulsed-field gel electrophoresis. Int J Food Microbiol 46:187–192

    PubMed  CAS  Google Scholar 

  • Miettinen MK, Palmu L, Björkroth KJ, Korkeala H (2001) Prevalence of Listeria monocytogenes in broilers at the abattoir, processing plant, and the retail level. J Food Prot 64:994–999

    PubMed  CAS  Google Scholar 

  • Mirkin G (2009) Helicobacter and stomach ulcers. http://www.drmirkin.com/morehealth/G123.htm, Accessed on 22nd of August 2009

  • Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE (2004) Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun 72:3658–3663

    PubMed  CAS  Google Scholar 

  • Morck DW, Raybould TJ, Acres SD, Babiuk LA, Nelligan J, Costerton JW (1987) Electron microscopic description of glycocalyx and fimbriae on the surface of Pasturella haemolytica. Can J Vet Res 51:83–88

    PubMed  CAS  Google Scholar 

  • Morck DW, Costerton JW, Bolingbroke DO, Ceri H, Boyd ND, Olson ME (1990) A guinea pig model of bovine pneumonic Pasteurellosis. Can J Vet Res 54:139–145

    PubMed  CAS  Google Scholar 

  • Moretro T, Hermansen L, Holck AL, Sidhu MS, Rudi K, Langsrud S (2003) Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Appl Environ Microbiol 69:5648–5655

    PubMed  CAS  Google Scholar 

  • Morris DO, Rook KA, Shofer FS, Rankin SC (2006) Screening of Staphylococcus aureus, Staphylococcus intermedius, and Staphylococcus schleiferi isolates obtained from small companion animals for antimicrobial resistance: a retrospective review of 749 isolates (2003–04). Vet Dermatol 17:332–337

    PubMed  Google Scholar 

  • Morten H, Eberl L, Nielsen J, Givskov M (2003) Quorum sensing: a novel target for the treatment of biofilm infections. BioDrugs 4:241–250

    Google Scholar 

  • Mosteller TM, Bishop JR (1993) Sanitizer efficacy against attached bacteria in a milk biofilm. J Food Prot 56:34–41

    CAS  Google Scholar 

  • Murphy C, Carroll C, Jordan KN (2006) Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J Appl Microbiol 100:623–632

    PubMed  CAS  Google Scholar 

  • Naktin J, Beavis KG (1999) Yersinia enterocolitica and Yersinia pseudotuberculosis. Clin Lab Med 19:523–536

    PubMed  CAS  Google Scholar 

  • Narayan KG (1982) Food borne infection with Clostridium perfringens type A. Int J Zoonoses 9:12–32

    PubMed  CAS  Google Scholar 

  • Naser S, Ghobrial G, Romero C, Valentine J (2004) Culture of subspecies from the blood of patients with Crohn’s disease. Lancet 364:1039–1044

    PubMed  Google Scholar 

  • Nayak R, Stewart T, Wang RF, Lin J, Cerniglia CE, Kenney PB (2004) Genetic diversity and virulence gene determinants of antibiotic-resistant Salmonella isolated from preharvest turkey production sources. Int J Food Microbiol 91:51–62

    PubMed  CAS  Google Scholar 

  • O’Brien SS, Lindsay D, von Holy A (2004) The presence of Enterococcus, coliforms and E. coli in a commercial yeast manufacturing process. Int J Food Microbiol 94:23–31

    PubMed  Google Scholar 

  • O’Leary KC, Gagnon GA, Chauret CP, Andrews RC (2002) Evaluation of chlorine dioxide for biofilm control in a model distribution system. Proceedings of the Water Environment Federation Disinfection, vol 9. Water Environment Federation, Orlando, FL, pp 297–305

    Google Scholar 

  • Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92

    PubMed  Google Scholar 

  • O’Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, O’Gara JP (2007) Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 45:1379–1388

    PubMed  Google Scholar 

  • Osaki M, Takamatsu D, Shimoji Y, Sekizaki T (2002) Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J Bacteriol 184:971–982

    PubMed  CAS  Google Scholar 

  • Oshio I, Osaki T, Hanawa T, Yonezawa H, Zaman C, Kurata S, Kamiya S (2009) Vertical Helicobacter pylori transmission from Mongolian gerbil mothers to pups. J Med Microbiol 58:656–662

    PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    PubMed  Google Scholar 

  • Oulahal-Lagsir N, Martial-Gros A, Bonneau M, Blom LJ (2003) “Escherichia coli-milk” biofilm removal from stainless steel surfaces: synergism between ultrasonic waves and enzymes. Biofouling 19:159–168

    PubMed  CAS  Google Scholar 

  • Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539

    PubMed  CAS  Google Scholar 

  • Panlilio AL, Culver DH, Gaynes R, Tolson JS, Martone WJ (1992) Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975–1991. Infect Control Hosp Epidemiol 13:582

    PubMed  CAS  Google Scholar 

  • Park SF (2002) The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol 74:177–188

    PubMed  CAS  Google Scholar 

  • Parsek MR, Fuqua C (2004) Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186:4427–4440

    PubMed  CAS  Google Scholar 

  • Paziewska A, Bednarska M, Niewegłowski H, Karbowiak G, Bajer A (2007) Distribution of Cryptosporidium and Giardia spp. in selected species of protected and game mammals from North-Eastern Poland. Ann Agric Environ Med 14(2):265–270

    PubMed  Google Scholar 

  • Pedley S, Bartram J, Rees G, Dufour A, Cotruvo J (eds) (2004) Pathogenic mycobacteria in water: a guide to public health consequences, monitoring, and management. IWA, London

    Google Scholar 

  • Percival SL, Thomas JG (2009) Transmission of Helicobacter pylori and the role of water and biofilms. Water Health 7:469–477

    Google Scholar 

  • Percival SL, Walker JT, Hunter P (2000) Microbiological aspects of biofilms and drinking water. CRC, Boca Raton, FL, ISBN 084930590

    Google Scholar 

  • Percival SL, Kite P, Eastwood K, Murga R, Carr J, Arduino MJ, Donlan RM (2005) Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm. Infect Control Hosp Epidemiol 26:515–519

    PubMed  Google Scholar 

  • Percival SL, Sabbuba NA, Kite P, Stickler DJ (2009) The effect of EDTA instillations on the rate of development of encrustation and biofilms in Foley catheters. Urol Res 37:205–209

    PubMed  CAS  Google Scholar 

  • Pérez-Conesa D, McLandsborough L, Weiss J (2006) Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. J Food Prot 69:2947–2954

    PubMed  Google Scholar 

  • Pickup RW, Mallinson HEH, Rhodes G (1999) Sampling the water bodies: tangential flow filtration. Environ Monitor Bacteria 12:29–34

    Google Scholar 

  • Pickup RW, Rhodes G, Arnott S, Sidi-Boumedine K, Bull TJ, Weightman A, Hurley M, Hermon-Taylor J (2005) Mycobacterium avium subsp. paratuberculosis in the catchment area and water of the River Taff in South Wales, United Kingdom, and its potential relationship to clustering of Crohn’s disease cases in the city of Cardiff. Appl Environ Microbiol 71:2130–2139

    PubMed  CAS  Google Scholar 

  • Piriou P, Dukan S, Levi Y, Jarrige PA (1997) Prevention of bacterial growth in drinking water distribution systems. Water Sci Technol 35:283–287

    CAS  Google Scholar 

  • Portaels F, Fonteyene PA, de Beenhouwer H, de Rijk P, Guédénon A, Hayman J, Meyers MW (1996) Variability in 3′ end of 16S rRNA sequence of Mycobacterium ulcerans is related to geographic origin of isolates. J Clin Microbiol 34:962–965

    PubMed  CAS  Google Scholar 

  • Prakash B, Veeregowda BM, Krishnappa G (2003) Biofilms: a survival strategy of bacteria. Curr Sci 85:1299–1307

    Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    PubMed  CAS  Google Scholar 

  • Quaglia NC, Dambrosio A, Normanno G, Parisi A, Patrono R, Ranieri G, Rella A, Celano GV (2008) High occurrence of Helicobacter pylori in raw goat, sheep and cow milk inferred by glmM gene: a risk of food-borne infection? Int J Food Microbiol 124:43–47

    PubMed  CAS  Google Scholar 

  • Raad I, Hanna H, Jiang Y, Dvorak T, Reitzel R, Chaiban G, Sherertz R, Hachem R (2007) Comparative activity of daptomycin. Linezolid and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrob Agents Chemother 51:1656–1660

    PubMed  CAS  Google Scholar 

  • Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638

    PubMed  CAS  Google Scholar 

  • Raus J, Love DN (1983) Characterization of coagulase-positive Staphylococcus intermedius and Staphylococcus aureus isolated from veterinary clinical specimens. J Clin Microbiol 18:789–792

    PubMed  CAS  Google Scholar 

  • Recordati C, Gualdi V, Tosi S, Facchini RV, Pengo G, Luini M, Simpson KW, Scanziani E (2007) Detection of Helicobacter spp. DNA in the oral cavity of dogs. Vet Microbiol 119:346–351

    PubMed  CAS  Google Scholar 

  • Rediske AM, Hymas WC, Wilkinson R, Pitt WG (1998) Ultrasonic enhancement of antibiotic action on several species of bacteria. J Gen Appl Microbiol 44:283–288

    PubMed  CAS  Google Scholar 

  • Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73:1908–1913

    PubMed  CAS  Google Scholar 

  • Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S (2006) In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol 188:3572–3581

    PubMed  CAS  Google Scholar 

  • Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P (2008) Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74:4491–4497

    PubMed  CAS  Google Scholar 

  • Rodrigue DC, Tauxe RV, Rowe B (1990) International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect 105:21–27

    PubMed  CAS  Google Scholar 

  • Rosenberg M, Kjelleberg S (1986) Hydrophobic interactions: role in bacterial adhesion. Adv Microbiol Ecol 9:353–393

    CAS  Google Scholar 

  • Rubino S, Muresu E, Solinas M, Santona M, Paglietti B, Azara A, Schiaffino A, Santona A, Maida A, Cappuccinelli P (1998) IS200 fingerprint of Salmonella enterica serotype Typhimurium human strains isolated in Sardinia. Epidemiol Infect 120:215–222

    PubMed  CAS  Google Scholar 

  • Rycroft AN, Garside LH (2000) Actinobacillus species and their role in animal disease. Vet J 159:18–36

    PubMed  CAS  Google Scholar 

  • Samelis J, Sofos JN (2003) Strategies to control stress-adapted pathogens. In: Yousef AE, Juneja VK (eds) Microbial stress adaptation and food safety. CRC, Boca Raton, FL, pp 303–351

    Google Scholar 

  • Samra Z, Kaufmann L, Zeharia A, Ashkenazi S, Amir J, Bahar J, Reischl U, Naumann L (1999) Optimal detection and identification of Mycobacterium haemophilum in specimens from pediatric patients with cervical lymphadenopathy. J Clin Microbiol 37:832–834

    PubMed  CAS  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154

    PubMed  CAS  Google Scholar 

  • Sawhney R, Berry V (2009) Bacterial biofilm formation, pathogenicity, diagnostics and control: an overview. Indian J Med Sci 63:313–321

    PubMed  Google Scholar 

  • Schelonka RL, Ascher DP, McMahon DP, Drehner DM, Kuskie M (1994) Catheter related sepsis caused by Mycobacterium avium complex. Pediatr Infect Dis J 13:236–238

    PubMed  CAS  Google Scholar 

  • Searcy KE, Packman AI, Atwill ER, Harter T (2006) Capture and retention of Cryptosporidium parvum oocysts by Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 72:6242–6247

    PubMed  CAS  Google Scholar 

  • Seidler MJ, Salvenmoser S, Müller FM (2008) Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelia cells. Antimicrob Agents Chemother 52:4130–4136

    PubMed  CAS  Google Scholar 

  • Shahamat M, Paszko-Kolva C, Yamamoto H, Colwell R (1989) Ecological studies of Campylobacter pylori. Klin Wochenschr 67:62–63

    Google Scholar 

  • Sharma S, Anand SK (2002) Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol 19:627–636

    CAS  Google Scholar 

  • Silva FR, Mattos EM, Coimbra MV, Ferreira-Carvalho BT, Figueiredo AM (2001) Isolation and molecular characterization of methicillin-resistant coagulase-negative staphylococci from nasal flora of healthy humans at three community institutions in Rio de Janeiro City. Epidemiol Infect 127:57–62

    PubMed  CAS  Google Scholar 

  • Skirrow MB (1994) Diseases due to Campylobacter. Helicobacter and related bacteria. J Compar Pathol 111:113–149

    CAS  Google Scholar 

  • Skraber S, Helmi K, Willame R, Ferréol M, Gantzer C, Hoffmann L, Cauchie HM (2007) Occurrence and persistence of bacterial and viral faecal indicators in wastewater biofilms. Water Sci Technol 55:377–385

    PubMed  CAS  Google Scholar 

  • Smith MA, Ross MW (2002) Postoperative infection with Actinobacillus spp. in horses: 10 cases (1995–2000). J Am Vet Med Assoc 221:1306–1310

    PubMed  Google Scholar 

  • Sofos JN (2005) Improving the safety of fresh meat. Woodhead, Cambridge

    Google Scholar 

  • Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I (2002) Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808

    PubMed  CAS  Google Scholar 

  • Somers EB, Schoeni JL, Wong AC (1994) Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli O157:H7. Listeria monocytogenes and Salmonella typhimurium. Int J Food Microbiol 22:269–276

    PubMed  CAS  Google Scholar 

  • Songer JG (1997) Clostridial diseases of animals. In: Rood JI, McClane BA, Songer JG, Titball RW (eds) The clostridia: molecular biology and pathogenesis. Academic Press, San Diego, CA, pp 153–182

    Google Scholar 

  • Srinivasan A, Kraus CN, DeShazer D, Becker PM, Dick JD, Spacek L, Bartlett JG, Byrne WR, Thomas DL (2001) Glanders in a military research microbiologist. N Engl J Med 345:256–258

    PubMed  CAS  Google Scholar 

  • Sriskandan S, Slater JD (2006) Invasive disease and toxic shock due to zoonotic Streptococcus suis: an emerging infection in the east? Public Libr Sci Med 3:e187

    Google Scholar 

  • Steed KA, Falkinham JOIII (2006) Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl Environ Microbiol 72:4007–4011

    PubMed  CAS  Google Scholar 

  • Steitz A, Feddersen A, Freytag C, Daniello S, Schopf RE, Böcher WO, Bhakdi S, Husmann M (1997) Rapid identification of Mycobacterium marinum by comparative 16S-rRNA-gene analysis in five cases of progredient cutaneous infections. Eur J Dermatol 7:295–299

    Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    PubMed  CAS  Google Scholar 

  • Stickler D, Ganderton L, King J, Nettleton J, Winters C (1993) Proteus mirabilis biofilms and the encrustation of urethral catheters. Urol Res 21:407–411

    PubMed  CAS  Google Scholar 

  • Stone R (2007) Racing to defuse a bacterial time bomb. Science 317:1022–1024

    PubMed  CAS  Google Scholar 

  • Stoodley P, Wilson S, Hall-Stoodley L, Boyle JD, Lappin-Scott HM, Costerton JW (2001) Growth and detachment of cell clusters from mature mixed species biofilms. Appl Environ Microbiol 67:5608–5613

    PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    PubMed  CAS  Google Scholar 

  • Storey MV, Ashbolt NJ, Stenström TA (2004) Biofilms, thermophilic amoebae and Legionella pneumophila, a quantitative risk assessment for distributed water. Water Sci Technol 50:77–82

    PubMed  CAS  Google Scholar 

  • Sung JY, Leung JW, Shaffer EA, Lam K, Olson ME, Costerton JW (1992) Ascending infection of the biliary tract after surgical sphincterotomy and biliary stenting. J Gastroenterol Hepatol 7:240–245

    PubMed  CAS  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127

    PubMed  CAS  Google Scholar 

  • Takeda S, Arashima Y, Kato K, Ogawa M, Kono K, Watanabe K, Saito T (2003) A case of Pasteurella haemolytica sepsis in a patient with mitral valve disease who developed a splenic abscess. Scand J Infect Dis 35:764–765

    PubMed  Google Scholar 

  • Talan DA, Staatz D, Staatz A, Goldstein EJC, Singer K, Overturf GD (1989) Staphylococcus intermedius in canine gingiva and canine-inflicted human wound infections: laboratory characterization of a newly recognized zoonotic pathogen. J Clin Microbiol 27:78–81

    PubMed  CAS  Google Scholar 

  • Tanner MA, Everett CL, Youvan DC (2000) Molecular phylogenetic evidence for noninvasive zoonotic transmission of Staphylococcus intermedius from a canine pet to a human. J Clin Microbiol 38:1628–1631

    PubMed  CAS  Google Scholar 

  • Taponen S, Jantunen A, Pyorala E, Pyorala S (2003) Efficacy of targeted 5-day combined parenteral and intramammary treatment of clinical mastitis caused by penicillin-susceptible or penicillin-resistant Staphylococcus aureus. Acta Vet Scand 44:53–62

    PubMed  CAS  Google Scholar 

  • Taylor RH, Falkinham JO III, Norton CD, LeChevallier MW (2000) Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl Environ Microbiol 66:1702–1705

    PubMed  CAS  Google Scholar 

  • Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP (2007) Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol 118:15–19

    PubMed  CAS  Google Scholar 

  • Temmerman R, Vervaeren H, Noseda B, Boon N, Verstraete W (2006) Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328

    PubMed  CAS  Google Scholar 

  • Teuber M, Schwarz F, Perreten V (2003) Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage. Int J Food Microbiol 88:325–329

    PubMed  CAS  Google Scholar 

  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperoneusher pili assembly system. Microbiology 149:3473–3484

    PubMed  CAS  Google Scholar 

  • Tormo MA, Martí M, Valle J, Manna AC, Cheung AL, Lasa I, Penadés JR (2005) SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol 187:2348–2356

    PubMed  CAS  Google Scholar 

  • Torvinen E, Lehtola MJ, Martikainen PJ, Miettinen IT (2007) Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus and temperature. Appl Environ Microbiol 73:6201–6207

    PubMed  CAS  Google Scholar 

  • Trachoo N, Frank JF (2002) Effectiveness of chemical sanitizers against Campylobacter jejuni-containing biofilms. J Food Prot 65:1117–1121

    PubMed  CAS  Google Scholar 

  • Trachoo N, Frank JF, Stern NJ (2002) Survival of Campylobacter jejuni in biofilms isolated from chicken houses. J Food Prot 65:1110–1116

    PubMed  CAS  Google Scholar 

  • Tremoulet F, Duche O, Namane A, Martinie B, Labadie JC (2002) A proteomic study of Escherichia coli O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode. FEMS Microbiol Lett 215:7–14

    PubMed  CAS  Google Scholar 

  • Troller JA (1993) Sanitation in food processing, 2nd edn. Academic Press, San Diego, pp 124–126

    Google Scholar 

  • Uehling DT (1991) Current concepts of the urinary bladder defenses against infection. Int Urogynecol J 2:32–35

    Google Scholar 

  • Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penadés JR, Lasa I (2003) SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48:1075–1087

    PubMed  CAS  Google Scholar 

  • Van Der Wende E, Characklis WG (1990) Biofilms in potable water distribution systems. In: McFeters GA (ed) Drinking water microbiology: progress and recent developments, Brock Springer Series in Contemporary Bioscience. Springer, New York, pp 249–268

    Google Scholar 

  • van Duijkeren E, Houwers DJ, Schoormans A, Broekhuizen-Stins MJ, Ikawaty R, Fluit AC, Wagenaar JA (2008) Transmission of methicillin-resistant Staphylococcus intermedius between humans and animals. Vet Microbiol 128:213–215

    PubMed  Google Scholar 

  • van Duynhoven YTHP, de Jonge R (2001) Transmission of Helicobacter pylori: a role for food? Bull World Health Org 79(5). http://www.who.int/bulletin/archives/79(5)455.pdf. Accessed 13 Sept 2009

  • Van Loosdrecht MC, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modelling of biofilm structures. Antonie Leeuwenhoek 81:245–256

    PubMed  Google Scholar 

  • Vandamme P, Harrington CS, Jalava K, On SLW (2000) Misidentifying helicobacters: the Helicobacter cinaedi example. J Clin Microbiol 38:2261–2266

    PubMed  CAS  Google Scholar 

  • Vandenesch F, Célard M, Arpin D, Bes M, Greenland T, Etienne J (1995) Catheter-related bacteremia associated with coagulase-positive Staphylococcus intermedius. J Clin Microbiol 33:2508–2510

    PubMed  CAS  Google Scholar 

  • Vaneechoutte M, Devriese LA, Dijkshoorn L, Lamote B, Deprez P, Verschraegen G, Haesebrouck F (2000) Acinetobacter baumannii-infected vascular catheters collected from horses in an equine clinic. J Clin Microbiol 38:4280–4281

    PubMed  CAS  Google Scholar 

  • Varga J, Stirewalt VL, Melville SB (2004) The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J Bacteriol 186:5221–5229

    PubMed  CAS  Google Scholar 

  • Varga JJ, Therit B, Melville SB (2008) Type IV Pili and the CcpA protein are needed for maximal biofilm formation by the Gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76:4944–4951

    PubMed  CAS  Google Scholar 

  • Vasudevan P, Nair MK, Annamalai T, Venkitanarayanan KS (2003) Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 92:179–185

    PubMed  CAS  Google Scholar 

  • Vejborg RM, Klemm P (2008) Blocking of bacterial biofilm formation by a fish protein coating. Appl Environ Microbiol 74:3551–3558

    PubMed  CAS  Google Scholar 

  • Vengust M, Anderson ME, Rousseau J, Weese JS (2006) Methicillin-resistant staphylococcal colonization in clinically normal dogs and horses in the community. Lett Appl Microbiol 43:602–606

    PubMed  CAS  Google Scholar 

  • Vorachit M, Lam K, Jayanetra P, Costerton JW (1995) Electron microscopy study of the mode of growth of Pseudomonas pseudomallei in vitro and in vivo. J Trop Med Hyg 98:379–391

    PubMed  CAS  Google Scholar 

  • Vuong C, Otto M (2002) Staphylococcus epidermidis infections. Microbes Infect 4:481–489

    PubMed  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing reulons: effects of growth phase and environment. J Bacteriol 185:2080–2095

    PubMed  CAS  Google Scholar 

  • Walker JT, Bradshaw DJ, Bennett AM, Fulford MR, Martin MV, Marsh PD (2000) Microbial biofilm formation and contamination of dental-unit water systems in general dental practice. Appl Environ Microbiol 66:3363–3367

    PubMed  CAS  Google Scholar 

  • Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701

    PubMed  CAS  Google Scholar 

  • Walsh D, Portaels F, Meyers W (2009) Buruli ulcer (Mycobacterium ulcerans infection): a re-emerging disease. Clin Microbiol Newsl 31:119–127

    Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    PubMed  CAS  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    PubMed  CAS  Google Scholar 

  • Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms: prokaryotic adventures in multicellularity. Curr Opin Microbiol 6:578–585

    PubMed  CAS  Google Scholar 

  • Weigel LM, Donlan RM, Shin DH, Jensen B, Clark NC, McDougal LK, Zhu W, Musser KA, Thompson J, Kohlerschmidt D, Dumas N, Limberger RJ, Patel JB (2007) High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 51:231–238

    PubMed  CAS  Google Scholar 

  • Weissenberger CA, Cazalet C, Buchrieser C (2007) Legionella pneumophila – a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci 64:432–448

    Google Scholar 

  • Weyant RS, Moss CW, Weaver RE, Hollis DG, Jordan JJ, Cook EC, Daneshvar MI (1996) Identification of unusual pathogenic gram-negative aerobic and facultatively anaerobic bacteria, 2nd edn. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Wheelis M (1998) First shots fired in biological warfare. Nature 395:213

    PubMed  CAS  Google Scholar 

  • Whipps CM, Dougan ST, Kent ML (2007) Mycobacterium haemophilum infections of zebrafish (Danio rerio) in research facilities. FEMS Microbiol Lett 270:21–26

    PubMed  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    PubMed  CAS  Google Scholar 

  • Whittington RJ, Marshall DJ, Nicolls PJ, Marsh IB, Raddacliff LA (2004) Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl Environ Microbiol 70:2989–3004

    PubMed  CAS  Google Scholar 

  • WHO (2005) Legionellosis. WHO, Geneva. http://www.who.int/mediacentre/factsheets/fs285/en/index.html. Accessed 24 Oct 2009

  • Wiencek KM, Klapes NA, Foegeding PM (1990) Hydrophobicity of Bacillus and Clostridium spores. Appl Environ Microbiol 56:2600–2605

    PubMed  CAS  Google Scholar 

  • Wimpenny J (2000) An overview of biofilms as functional communities. In: Allison D (ed) Community structure and co-operation in biofilms. Cambridge University Press, West Nyack, NY, p 1

    Google Scholar 

  • Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    PubMed  CAS  Google Scholar 

  • Wirtanen G (2002) Equipment hygiene in the food processing industry ± hygiene problems and methods of controlling Listeria monocytogenes, VTT Publications 480. Otamedia Oy, Espoo. In Finnish

    Google Scholar 

  • Wirtanen G, Mattila-Sandholm T (1992) Effect of the growth phase of food-borne biofilms on their resistance to a chlorine sanitizer Part II. Food Sci Technol 25:50–54

    CAS  Google Scholar 

  • Wirtanen G, Salo S (2004) DairyNET ± hygiene control in Nordic dairies, VTT Publication 545. Otamedia Oy, Espoo

    Google Scholar 

  • Witte W, Strommenger B, Stanek C, Cuny C (2007) Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis 13:255–258

    PubMed  CAS  Google Scholar 

  • Wolyniak EA, Hargreaves BR, Jellison KL (2009) Retention and release of Cryptosporidium parvum oocysts by experimental biofilms composed of a natural stream microbial community. Appl Environ Microbiol 75:4624–4626

    PubMed  CAS  Google Scholar 

  • Wong ACL (1998) Biofilms in food processing environments. J Dairy Sci 81:2765–2770

    PubMed  CAS  Google Scholar 

  • Wright JB, Athar MA, van Olm TM, Wootliff JS, Costerton JW (1989) Atypical legionellosis: isolation of Legionella pneumophila serogroup 1 from a patient with aspiration pneumonia. J Hosp Infect 13:187–190

    PubMed  CAS  Google Scholar 

  • Wuertz S, Bishop PL, Wilderer PA (2003) Biofilms in wastewater treatment: an interdisciplinary approach. IWA, London

    Google Scholar 

  • Yao Y, Sturdevant DE, Otto M (2005) Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J Infect Dis 191:289–298

    PubMed  CAS  Google Scholar 

  • Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850

    PubMed  CAS  Google Scholar 

  • Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, Summersgill J, File T, Heath CM, Paterson DL, Chereshsky A (2002) Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186:127–128

    PubMed  Google Scholar 

  • Zanen HC, Engel HWB (1975) Porcine streptococci causing meningitis and septicemia in man. Lancet 1:1286–1288

    Google Scholar 

  • Zeiss CJ, Jardine J, Huchzermeyer H (1994) A case of disseminated tuberculosis in a dog caused by Mycobacterium avium-intracellulare. J Am Anim Hosp Assoc 30:419–424

    Google Scholar 

  • Zhang GH, Sun YX, Gu P, Ding SY (2006) Inactivation of pathogenic microorganisms by ultraviolet. Technol Water Treat 32:5–8

    Google Scholar 

  • Zong ZY, Lu XJ, Gao YY (2002) Aeromonas hydrophilia infection: clinical aspects and therapeutic options. Rev Med Microbiol 13:151

    Google Scholar 

  • Zottola EA, Sasahara KC (1994) Microbial biofilms in the food industry – should they be a concern? Int J Food Microbiol 23:125–148

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana B. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García, A.B., Percival, S.L. (2011). Zoonotic Infections: The Role of Biofilms. In: Percival, S., Knottenbelt, D., Cochrane, C. (eds) Biofilms and Veterinary Medicine. Springer Series on Biofilms, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21289-5_3

Download citation

Publish with us

Policies and ethics