Skip to main content

Single Neuron Transient Activity Detection by Means of Tomography

  • Conference paper
Advances in Computational Intelligence (IWANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6691))

Included in the following conference series:

  • 2167 Accesses

Abstract

Spectral methods allow the estimation of the firing frequency in the activity of a single neuron. However, transient periods, changes in the neuron firing frequency or even changes in the neuron activity regime (rest, tonic firing or spiking) due to different inputs or to the presence of neurotransmitters are not well detected by means of these methods due to the fact that frequency and time are not commutable operators. Some other methods have been developed to deal with local transients, for example the localized Fourier transform or the Wigner distribution. Unfortunately these localized methods need fine tuning to find an adequate working resolution and the resulting coefficients are hard to interpret. In this work we propose the use of the tomographic transforms to detect and characterize transient components in the behaviour of a single neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szucs, A., Varona, P., Volkovskii, A.R., Abarbanel, H.D.I., Rabinovich, M.I., Selverston, A.I.: Interacting biological and electronic neurons generate realistic oscillatory rhythms. Neuro Report 11(3), 563–569 (2000)

    Google Scholar 

  2. Aguirre, C., Pascual, P.: A Wavelet Based Method for Detecting Multiple Encoding Rhythms in Neural Networks. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 9–16. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Cohen, L.: Time-frequency distributions - A review. Proc. IEEE 77, 941–981 (1989)

    Article  Google Scholar 

  4. Khadra, L.M.: Time-frequency distribution of multi-component signals. Int. J. of Electronics 67, 53–57 (1989)

    Article  Google Scholar 

  5. Choi, H.I., Williams, W.J.: Improved time-frequency representation of multi-component signals using exponential kernels. IEEE Trans. Acoust. Speech Signal Process 37, 862–871 (1989)

    Article  Google Scholar 

  6. Fineberg, A.B., Mammone, R.J.: Detection and classification of multicomponent signals. In: Proceedings of 25th Asilomar Conference on Computer Signal and Systems, pp. 1093–1097 (1991)

    Google Scholar 

  7. Briolle, F., Lima, R., Manko, V.I., Vilela Mendes, R.: A tomographic analysis of reflectometry data I: Component factorization. Meas. Sci. Technol. 20(10), 105501–105511 (2009)

    Article  Google Scholar 

  8. Briolle, F., Lima, R., Manko, V.I., Vilela Mendes, R.: A tomographic analysis of reflectometry data II: phase derivative. Meas. Sci. Technol. 20(10), 105512–105522 (2009)

    Google Scholar 

  9. Aguirre, C., Campos, D., Pascual, P., Serrano, E.: Neuronal behavior with sub-threshold oscillations and spiking/bursting activity using a piecewise linear two-dimensional map. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 103–108. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Manko, M.A., Manko, V.I., Vilela Mendes, R.: Tomograms and other transforms: a unified view. Journal of Physics A: Math. Gen. 34, 8321–8332 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Manko, V.I., Vilela Mendes, R.: Noncommutative time frequency tomography. Physics Letters A 263, 53–59 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aguirre, C., Pascual, P., Campos, D., Serrano, E. (2011). Single Neuron Transient Activity Detection by Means of Tomography. In: Cabestany, J., Rojas, I., Joya, G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21501-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21501-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21500-1

  • Online ISBN: 978-3-642-21501-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics