Skip to main content

LDA+GTB Method for Band Structure Calculations in the Strongly Correlated Materials

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 171))

Abstract

We present the multielectron LDA+GTB (local density approximation plus generalized tight-binding) approach to the electronic structure calculations for the Mott insulators. This method is a straightforward generalization of the Hubbard perturbation theory which starts from the atomic limit. All local interactions within the unit cell are treated by the exact diagonalization of the multiband pd Hamiltonian with the parameters calculated within LDA. Intercell Hoppings and interactions between the unit cells are considered as perturbation within the Hubbard X-operators representation. We also discuss the application of the LDA+GTB method to cuprates, manganites, and cobaltites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  3. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    Article  ADS  Google Scholar 

  4. J.C. Hubbard, Proc. Roy. Soc. A 285, 542 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  5. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  6. A. Svane, O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990)

    Article  ADS  Google Scholar 

  7. V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, G. Kotliar, J. Phys. Condens. Matter 9, 7359 (1997)

    Article  ADS  Google Scholar 

  8. A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    Article  ADS  Google Scholar 

  9. K. Held, I.A. Nekrasov, N. Blümer, V.I. Anisimov, D. Vollhardt, Int. J. Mod. Phys. B 15, 2611 (2001)

    Article  ADS  Google Scholar 

  10. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  11. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  12. D. Vollhardt, in Correlated Electron Systems, ed. by V. J. Emery (World Scientific, Singapore, 1993), p. 57

    Google Scholar 

  13. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  14. M.H. Hettler, A.N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, H.R. Krishnamurthy, Phys. Rev. B 58, R7475 (1998)

    Article  ADS  Google Scholar 

  15. G. Kotliar, S.Y. Savrasov, G. Pálsson, G. Biroli, Phys. Rev. Lett. 87, 186401 (2001)

    Article  ADS  Google Scholar 

  16. M. Potthoff, Eur. Phys. J. B 32, 429 (2003)

    Article  ADS  Google Scholar 

  17. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  18. S.Yu. Savrasov, G. Kotliar, Phys. Rev. B 69, 245101 (2004)

    Article  ADS  Google Scholar 

  19. R. Del Sole, L. Reining, R.W. Godby, Phys. Rev. B 49, 8024 (1994)

    Article  ADS  Google Scholar 

  20. R.W. Godby, M. Schlter, L.J. Sham, Phys. Rev. Lett. 56, 2415 (1986)

    Article  ADS  Google Scholar 

  21. F. Aryasetiawan, O. Gunnarsson, Phys. Rev. Lett. 74, 3221 (1995)

    Article  ADS  Google Scholar 

  22. S.V. Faleev, M. van Schilfgaarde, T. Kotani, Phys. Rev. Lett. 93, 126406 (2004)

    Article  ADS  Google Scholar 

  23. S.G. Ovchinnikov, I.S. Sandalov, Physica C 161, 607 (1989)

    Article  ADS  Google Scholar 

  24. V.A. Gavrichkov, S.G. Ovchinnikov, A.A. Borisov, E.G. Goryachev, JETP 91, 369 (2000)

    Article  ADS  Google Scholar 

  25. Y.B. Gaididei, V.M. Loktev, Phys. Stat. Sol. B 147, 307 (1988)

    Article  ADS  Google Scholar 

  26. M.M. Korshunov, V.A. Gavrichkov, S.G. Ovchinnikov, I.A. Nekrasov, Z.V. Pchelkina, V.I. Anisimov, Phys. Rev. B. 72, 165104 (2005)

    Article  ADS  Google Scholar 

  27. V.A. Gavrichkov, S.G. Ovchinnikov, L.E. Yakimov, JETP 102, 972 (2006)

    Article  ADS  Google Scholar 

  28. S.G. Ovchinnikov, Yu.S. Orlov, I.A. Nekrasov, Z.V. Pchelkina, JETP 112, 140 (2011)

    Article  ADS  Google Scholar 

  29. S.G. Ovchinnikov, V.V. Val’kov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, London, 2004), p. 241

    Google Scholar 

  30. P. Fulde, Electron Correlations in Molecular and Solids (Springer, Berlin, 1991), p. 422

    Google Scholar 

  31. S. Maekawa, T. Tohyama, S.E. Barnes, S. Ishihara, W. Koshibae, G. Khaliullin, Physics of Transition Metal Oxides (Springer, Berlin, 2004), p. 377

    Google Scholar 

  32. D.N. Zubarev, Sov. Phys. Usp. 3, 320 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  33. O.K. Andersen, Z. Pawlowska, O. Jepsen, Phys. Rev. B 34, 5253 (1986)

    Article  ADS  Google Scholar 

  34. V.I. Anisimov, D.E. Kondakov, A.V. Kozhevnikov, I.A. Nekrasov, Z.V. Pchelkina, J.W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, D. Vollhardt, Phys. Rev. B 71, 125119 (2005)

    Article  ADS  Google Scholar 

  35. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

    Article  ADS  Google Scholar 

  36. C.M. Varma, S. Smitt-Rink, E. Abrahams, Solid State Commun. 62, 681 (1987)

    Article  ADS  Google Scholar 

  37. O. Gunnarsson, O.K. Andersen, O. Jepsen, J. Zaanen, Phys. Rev. B 39, 1708 (1989)

    Article  ADS  Google Scholar 

  38. V.I. Anisimov, M.A. Korotin, I.A. Nekrasov, Z.V. Pchelkina, S. Sorella, Phys. Rev. B 66, 100502(R) (2002)

    Google Scholar 

  39. O.K. Andersen, T. Saha-Dasgupta, Phys. Rev. B 62, 16219 (R) (2000)

    Google Scholar 

  40. V.A. Gavrichkov, S.G. Ovchinnikov, I.A. Nekrasov, E.E. Kohorina, Z.V. Pchelkina, Phys. Solid State 49, 2052 (2007)

    Article  ADS  Google Scholar 

  41. R. Raimondi, J.H. Jefferson, L.F. Feiner, Phys. Rev. B 53, 8774 (1996)

    Article  ADS  Google Scholar 

  42. J. Zaanen, G.A. Sawatzky, J. Solid State Chem. 88, 8 (1990)

    Article  ADS  Google Scholar 

  43. R.O. Zaitsev, JETP 43, 574 (1976)

    ADS  Google Scholar 

  44. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)

    Article  ADS  Google Scholar 

  45. B. Westwanski, A. Pawlikovski, Phys. Lett. A 43, 201 (1973)

    Article  ADS  Google Scholar 

  46. V.G. Bar’yakhtar, V.N. Krivoruchko, D.A. Yablonskii, Green’s Functions in Magnetism Theory, in Russian (Nauk. Dumka, Kiev, 1984), p. 336

    Google Scholar 

  47. S.G. Ovchinnikov, V.N. Zabluda, JETP 98, 135 (2004)

    Article  ADS  Google Scholar 

  48. S.G. Ovchinnikov, B.A. Gizhevskii, N.V. Kazak, V.V. Rudenko, A.V. Telegin, JETP Lett. 90, 519 (2009)

    Article  ADS  Google Scholar 

  49. S.G. Ovchinnikov, Phys. Rev. B 49, 9891 (1994)

    Article  ADS  Google Scholar 

  50. L.N. Bulaevskii, E.L. Nagaev, D.I. Khomskii, Sov. Phys. JETP 54, 1562 (1968)

    Google Scholar 

  51. K.A. Chao, J. Spalek, A.M. Oles, Sol. Stat. Phys. 10, 271 (1977)

    Article  ADS  Google Scholar 

  52. K.J. von Szczepanski, P. Horsch, W. Stephan, M. Ziegler, Phys. Rev. B 41, 2017 (1990)

    Article  ADS  Google Scholar 

  53. M.M. Korshunov, E.V. Zakharova, I.A. Nekrasov, Z.V. Pchelkina, S.G. Ovchinnikov, J. Phys. Condens. Matter 22, 015701 (2009)

    Article  ADS  Google Scholar 

  54. S.R. Park, Y.S. Roh, Y.K. Yoon, C.S. Leem, J.H. Kim, H. Koh, H. Eisaki, N.P. Armitage, C. Kim, Phys. Rev. B 75, 060501 (R) (2007)

    Google Scholar 

  55. M.M. Korshunov, S.G. Ovchinnikov, Euro. J. Phys. 57, 271 (2007)

    ADS  Google Scholar 

  56. S.G. Ovchinnikov, M.M. Korshunov E.I. Shneyder, JETP 109, 775 (2009)

    Article  ADS  Google Scholar 

  57. V.V. Val’kov, D.M. Dzebisashvili, JETP 100, 608 (2005)

    Google Scholar 

  58. S.G. Ovchinnikov, E.I. Shneyder, M.M. Korshunov, J. Phys. Condens. Matter 23, 045701 (2011)

    Article  ADS  Google Scholar 

  59. A.F. Barabanov, A.A. Kovalev, O.V. Urazaev, A.M. Belemuk, R. Hayn, JETP 92, 667 (2001)

    Article  ADS  Google Scholar 

  60. N.M. Plakida, V.S. Oudovenko, JETP 104, 230 (2007)

    Article  ADS  Google Scholar 

  61. L. Hozoi, M.S. Laad, P. Fulde, Phys. Rev. B 78, 165107 (2008)

    Article  ADS  Google Scholar 

  62. S. Sakai, Y. Motome, M. Imada, Phys. Rev. Lett. 102, 056404 (2009)

    Article  ADS  Google Scholar 

  63. S. Sakai, Y. Motome, M. Imada, Phys. Rev. B 82, 134505 (2010)

    Article  ADS  Google Scholar 

  64. V.A. Gavrichkov, S.G. Ovchinnikov, Z.V. Pchelkina, J. Phys. Conf. Series 200, 012046 (2010)

    Article  ADS  Google Scholar 

  65. S. Noguchi, S. Kawamata, K. Okuda, H. Najiri, M. Motokawa, Phys. Rev. B 66, 094404 (2002)

    Article  ADS  Google Scholar 

  66. M.W. Haverkort, Z. Hu, J.C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N.B. Brookes, H.H. Hsieh, H.-J. Lin, C.T. Chen, L.H. Tjeng, Phys. Rev. Lett. 97, 176405 (2006)

    Article  ADS  Google Scholar 

  67. Z. Ropka, R.J. Radwanski, Phys. Rev. B 67, 172401 (2003)

    Article  ADS  Google Scholar 

  68. Yu.S. Orlov, S.G. Ovchinnikov, JETP 109 322 (2009)

    Article  ADS  Google Scholar 

  69. S.G. Ovchinnikov, B.A. Gizhevskii, N.V. Kazak, V.V. Rudenko, A.V. Telegin, JETP Lett. 90, 519 (2009)

    Article  ADS  Google Scholar 

  70. U. Lundin, I. Sandalov, O. Eriksson, B. Johansson, Solid State Commun. 115, 7 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

First of all, we would like to thank people with whom we collaborated to develop the LDA+GTB method: I.A. Nekrasov, Z.V. Pchelkina, Yu.S. Orlov, and V.I. Anisimov. We are also thankful to O.K. Andersen, A.F. Barabanov, P.J. Hirschfeld, K.I. Kikoin, N.M. Plakida, S. Sakai, A.-M.S. Tremblay, V.V. Val’kov, and R.O. Zaitsev for useful discussions.

This work was supported by the presidium of RAS program 18.7 “Quantum physics of condensed matter,” the program OFN RAS “Strong electron correlations,” RFFI Grants 09-02-00127, 09-02-00171, and 10-02-00251, the Siberian-Ural integration grant #40, Grant of President of Russia MK-1683.2010.2, Russian FTP SC-P891, and the Dynasty Foundation and International Centre for Fundamental Physics in Moscow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Ovchinnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ovchinnikov, S.G., Gavrichkov, V.A., Korshunov, M.M., Shneyder, E.I. (2012). LDA+GTB Method for Band Structure Calculations in the Strongly Correlated Materials. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21831-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21831-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21830-9

  • Online ISBN: 978-3-642-21831-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics