Skip to main content

Heat and Mass Transfer in Porous Materials with Complex Geometry: Fundamentals and Applications

  • Chapter
  • First Online:
Heat and Mass Transfer in Porous Media

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 13))

Abstract

This chapter provides information related to simultaneous heat and mass transfer and dimension variations in unsaturated porous bodies of arbitrary shape during transient problems. Two mathematical approaches are presented and discussed: lumped and distributed-parameters models. Here, applications have been given to some engineering processes (cooling, heating and drying). A two-dimensional distributed model written in a orthogonal curvilinear coordinate system and which assumes the pure diffusion as the sole mechanism of heat and moisture transport within the solid is applied to ellipsoidal porous bodies (prolate spheroid). A lumped-parameter model written in any coordinate system which includes effects such as shape of the body, heat and mass generation, evaporation and convection is presented, and analytical solution of the governing equations, limitations of the modeling and general theoretical results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bih :

Heat transfer Biot number

Bim :

Mass transfer Biot number

c:

Specific heat, J/kg/K

D:

Diffusion coefficient, m2/s

Foc :

Heat transfer Fourier number

Fom :

Mass transfer Fourier number

hc :

Heat transfer coefficient, W/m2/K

hfg :

Latent heat of vaporization of the moist solid, J/kg

hm :

Mass transfer coefficient, m/s

J:

Jacobian

\( {\text{k}},\,{\bar{\text{k}}} \) :

Local and average thermal conductivity, W/m/K

L:

Focal length, m

L :

Characteristic dimension, m

Lc :

Characteristic length, m

L1, L2 :

Minor and major axis of the solid, m

M, \( \overline{\text{M}} \) :

Local and average moisture content, kg/kg (d.b.)

\( {\dot{\text{M}}} \) :

Mass generation per unit time, (kg/kg)/s

n:

Number of experimental points

\( {\hat{\text{n}}} \) :

Parameters number fitted

\( {\dot{\text{q}}} \) :

Heat generation per volume unit, W/m3

\( {\bar{\text{S}}}^{2} \) :

Variance

S:

Area, m2

\( {\text{S}}^{{{\Upphi}}} \) :

Source term

T:

Air temperature, °C

t:

Time, s

\( \hat{\text{U}},\;\hat{\text{V}},\;\hat{\text{W}} \) :

Metric coefficients

UR:

Air relative humidity

v:

Air velocity, m/s

V:

Volume, m3

x, y, z:

Cartesian coordinates, m

Exp:

Experimental

fn:

Final

0:

Initial

Num:

Numerical

p:

Product

s:

Dry solid

t:

Time

v:

Vapor

\( \infty \) :

Equilibrium

\( {{\upalpha}} \) :

Thermal diffusivity, m2/s

\( \overline{{{\upbeta}}}_{1} ,\,\overline{{{\upbeta}}}_{2} \) :

Shrinkage coefficient

\( {{\Updelta}} \) :

Variation

\( {{\Upphi}} \) :

Function

\({ {\Upphi}^{\prime\prime}}\) :

Potential \( {{\Upphi}} \) per area unit

\({ {\Upphi}^{\prime\prime\prime}}\) :

Potential \( \Upphi \) per volume unit

\( \Upgamma^{\Upphi } ,\;\Uppsi \) :

Transport property of material

μ, ϕ, ω:

Prolate spheroidal coordinates

η, ξ, ζ:

Orthogonal curvilinear coordinates

\( {{\theta}},\,\overline{{{\theta}}} \) :

Local and mean temperature of solid, °C

∇:

Del operator

ρ:

Density, kg/m3

References

  1. Abe, T., Afzal, T.M.: Thin-layer infrared radiation drying of rough rice. J. Agric. Eng. Res. 67, 289–297 (1997)

    Article  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications Inc, New York (1972)

    Google Scholar 

  3. Alassar, R.S.: Heat conduction from spheroids. J. Heat Transf. 121, 497–499 (1999)

    Article  CAS  Google Scholar 

  4. ASHRAE Refrigeration Handbook. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., Chapter 9: Cooling and freezing times of foods, Atlanta (1998a)

    Google Scholar 

  5. ASHRAE Refrigeration Handbook. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., Chapter 8: Thermal properties of foods, Atlanta (1998b)

    Google Scholar 

  6. Bansal, N.K., Garg, H.P.: Solar crop drying. In: Mujumdar, A.S. (ed.) Advances in Drying. Hemisphere Publishing Corporation, New York (1987)

    Google Scholar 

  7. Beck, J.V., Cole, K.D., Haji-Sheikh, A., Litkouhi, B.: Heat Conduction Using Green’s Functions. Hemispheric Publishing Corporation, New York (1992)

    Google Scholar 

  8. Becker, B.R., Misra, A., Fricke, B.A.: Bulk refrigeration of fruits and vegetables Part I: theoretical considerations of heat and mass transfer. Int. J. Heat. Ventil. Air Cond. Refrig. Res. 2, 122–134 (1996)

    Google Scholar 

  9. Brooker, D.B., Bakker-Arkema, F.W., Hall, C.W.: Drying and Storage of Grains and Oilseeds. AVI Book, New York (1992)

    Google Scholar 

  10. Bruin, S., Luyben, K.Ch.A.M: Drying of food materials. a review of recent developments. In: Mujumdar, A.S. (ed.) Advances in Drying. Hemisphere Publishing Corporation, New York (1980)

    Google Scholar 

  11. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. University Press, New York (1959)

    Google Scholar 

  12. Cihan, A., Kahveci, K., Hacihafizoğlu, O., Lima, A.G.B.: A diffusion based model for intermittent drying of rough rice. Heat Mass Transf. 44, 905–911 (2008)

    Article  Google Scholar 

  13. Datta, A.K.: Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: problem formulations. J. Food Eng. 80, 80–95 (2007)

    Article  Google Scholar 

  14. De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover Publications Inc, New York (1984)

    Google Scholar 

  15. de Lemos, M.J.S.: Turbulence in Porous Media: Modeling and Applications. Elsevier, Amsterdan (2006)

    Google Scholar 

  16. Flammer, C.: Spheroidal Wave Functions. Stanford University Press, Stanford (1957)

    Google Scholar 

  17. Fortes, M.: A Non-equilibrium thermodynamics approach to transport phenomena in capillary-porous media with special reference to drying of grains and foods. Ph.D. Thesis, Faculty of Purdue University, United States of America (1978)

    Google Scholar 

  18. Fortes, M., Okos, M.R.: Drying theories: their bases and limitations as applied to foods and grains. In: Mujumdar, A.S. (ed.) Advances in Drying. Hemisphere Publishing Corporation, Washington (1980)

    Google Scholar 

  19. Gebhart, B.: Heat Conduction and Mass Diffusion. McGraw-Hill Inc, New York (1993)

    Google Scholar 

  20. Hacihafizoğlu, O., Cihan, A., Kahveci, K., Lima, A.G.B.: A liquid diffusion model for thin-layer drying of rough rice. Eur. Food Res. Technol. 226, 787–793 (2008)

    Article  Google Scholar 

  21. Haji-Sheikh, A., Sparrow, E.M.: Transient heat conduction in a prolate spheroidal solid. Trans. ASME J. Heat Transf. 88, 331–333 (1966)

    CAS  Google Scholar 

  22. Haji-Sheikh, A., Sparrow, E.M.: The solution of heat conduction problems by probability methods. Trans. ASAE J. Heat Transf. 89, 121–131 (1967)

    CAS  Google Scholar 

  23. Hsu, C.-T.: Dynamic modeling of convective heat transfer in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  24. Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2002)

    Google Scholar 

  25. Ingham, D.B., Pop, I.: Transport phenomena in Porous Media. Elsevier, Oxford (1998)

    Google Scholar 

  26. Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media II. Elsevier, Oxford (2002)

    Google Scholar 

  27. Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media III. Elsevier, Oxford (2005)

    Google Scholar 

  28. Kaviany, M.: Heat transfer in porous media. In: Rohsenow, W.M., Hartnett, J.P., Cho, Y.I. (eds.) Handbook of Heat Transfer. McGraw Hill, Boston (1998)

    Google Scholar 

  29. Kaviany, M.: Principles of Heat Transfer. John Wiley and Sons Inc, New York (2002)

    Google Scholar 

  30. Kowaslski, S.J.: Thermomechanics of Drying Process. Springer, New York (2003)

    Google Scholar 

  31. Krokida, M.K., Maroulis, Z.B.: Effect of drying method on shrinkage and porosity. Drying Tech. 15, 2441–2458 (1997)

    Article  Google Scholar 

  32. Krokida, MK., Maroulis, ZB., Marinos-Kouris, D.: Effect of drying methods on physical properties of dehydrated products. In: Proceedings of the International Drying Symposium (IDS’98), Halkidiki, vol. A, pp. 809–816. (1998)

    Google Scholar 

  33. Lewis, W.K.: The rate of drying of solid materials. J. Ind. Eng. Chem. 13, 427–432 (1921)

    Article  CAS  Google Scholar 

  34. Lima, A.G.B.: Diffusion phenomenon in prolate spheroidal solids. Case studies: drying of banana. Doctor Thesis, State University of Campinas, Campinas, Brazil (In portuguese) (1999)

    Google Scholar 

  35. Lima, A.G.B., Nebra, S.A.: Theoretical analysis of the diffusion process inside prolate spheroidal solids. Drying Tech. 18, 21–48 (2000)

    Article  Google Scholar 

  36. Lima, A.G.B., Queiroz, M.R., Nebra, S.A.: Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chem. Eng. J 86, 85–93 (2002)

    Article  Google Scholar 

  37. Lima, A.G.B., Queiroz, M.R., Nebra, S.A.: Heat and mass transfer model including shrinkage applied to ellipsoidal products: case study for drying of bananas. Develop. Chem. Eng. Miner. Process. 10, 281–304 (2002)

    Article  Google Scholar 

  38. Lima, D.R., Farias, S.N., Lima, A.B.G.: Mass transport in spheroids using the Galerkin method. Braz. J. Chem. Eng. 21, 667–680 (2004)

    Article  Google Scholar 

  39. Luikov, A.V.: Analytical Heat Diffusion Theory. Academic Press Inc Ltd, London (1968)

    Google Scholar 

  40. Luikov, A.V., Mikhailov, Y.A.: Theory of Energy and Mass Transfer. Pergamon Press Ltd, Oxford (1965)

    Google Scholar 

  41. Luikov, A.V.: Heat and Mass Transfer in Capillary Porous Bodies. Pergamon Press, New York (1966)

    Google Scholar 

  42. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York (1966)

    Google Scholar 

  43. Masliyah, J.H., Epstein, N.: Numerical solution of heat and mass transfer from spheroids in steady axisymmetric flow. In: Hetsroni, G., Sideman, S., Hartnett, J.P. (eds.) Progress in heat and mass transfer. International Symposium on Two-phase System. Pergamon Press, Oxford (1972)

    Google Scholar 

  44. Mohsenin, N.N.: Thermal Properties of Foods and Agricultural Materials. Gordon and Breach Science Publishers, New York (1980)

    Google Scholar 

  45. Mujumdar, A.S., Menon, A.S.: Drying of solids: principles, classification and selection of dryers. In: Mujumdar, A.S. (ed.) Handbook of Industrial Drying. Marcel Dekker Inc, New York (1995)

    Google Scholar 

  46. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (1992)

    Google Scholar 

  47. Oliveira, V.A.B., Lima, A.G.B.: Mass diffusion inside prolate spherical solids: an analytical solution. Braz. J. Agri-ind. Prod. 4, 41–50 (2002)

    Google Scholar 

  48. Oliveira, V.A.B., Lima, A.G.B.: Drying of wheat based on the non-equilibrium thermodynamics: a numerical study. Drying Tech. 27, 306–313 (2009)

    Article  Google Scholar 

  49. Parry, J.L.: Mathematical modeling and computer simulation of heat and mass transfer in agricultural grain drying. A review. J. Agric. Eng. Res. 32, 1–29 (1985)

    Article  Google Scholar 

  50. Parti, M.: Selection of mathematical models for drying grain in thin-layers. J. Agric. Eng. Res. 54, 339–352 (1993)

    Article  Google Scholar 

  51. Pasternak, I.S., Gauvin, W.H.: Turbulent heat and mass transfer from stationary particles. Can. J. Chem. Eng. 38, 35–42 (1960)

    Article  CAS  Google Scholar 

  52. Pérez, V.H.: Study of the behavior of temperatura of banana during the drying process. Master Thesis, State University of Campinas, Campinas, Brazil (1998)

    Google Scholar 

  53. Perré, P., Rémond, R., Turner, I.W.: Comprehensive drying models based on volume averaging: background, application and perspective. In: Tsotsas, E., Mujumdar, A.S. (eds.) Modern Drying Technology: Computational Tools at Different Scales. Wiley-VHC, Weinheim (2007)

    Google Scholar 

  54. Queiroz, M.R.: Theoretical and experimental study of the drying kinetics of banana. Doctor Thesis, State University of Campinas, Campinas, Brazil (In portuguese) (1994)

    Google Scholar 

  55. Queiroz, M.R., Nebra, S.A.: Theoretical and experimental analysis of the drying kinetics of bananas. J. Food Eng. 47, 127–132 (2001)

    Article  Google Scholar 

  56. Rizvi, S.S.H.: Thermodynamic properties of foods in dehydration. In: Rao, M.A., Rizvi, S.S.H. (eds.) Engineering Properties of Foods, 2nd edn. Marcel Dekker Inc, New York (1995)

    Google Scholar 

  57. Saravacos, G.D.: Mass transfer properties of foods. In: Rao, M.A., Rizvi, S.S.H. (eds.) Engineering Properties of Foods, 2nd edn. Marcel Dekker Inc, New York (1995)

    Google Scholar 

  58. Shukla, K.N.: Diffusion Processes During Drying of Solids. World Scientific, Singapore (1990)

    Google Scholar 

  59. Silva, W.P., Precker, J.W., Silva, C.M.D.P.S., Gomes, J.P.: Determination of effective diffusivity and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: application to the drying of rough rice. J. Food Eng. 98, 302–308 (2010)

    Article  Google Scholar 

  60. Silva, W.P., Precker, J.W., Silva, C.M.D.P.S., Silva, D.D.P.S.: Determination of effective diffusivity via minimization of the objective function by scanning: application to drying of cowpea. J. Food Eng. 95, 298–304 (2009)

    Article  Google Scholar 

  61. Spanos, T.J.T.: The thermophysics of porous media. Chapman and Hall/CRC, Boca Raton (2002)

    Google Scholar 

  62. Strumillo, C., Kudra, T.: Drying: Principles, Science and Design. Gordon and Breach Science Publishers, New York (1986)

    Google Scholar 

  63. Sweat, V.E.: Experimental values of the thermal conductivity of selected fruits and vegetables. J. Food Sci. 39, 1080–1083 (1974)

    Article  Google Scholar 

  64. Tolaba, M.P., Aguerre, R.J., Suarez, C.: Shape characterization for diffusional analysis of corn drying. Drying Tech. 7, 205–217 (1989)

    Article  Google Scholar 

  65. Vadász, P.: Emerging Topics in Heat and Mass Transfer in Porous Media from Bioengineering and Microelectronics to Nanotechnology. Springer, Dordrecht (2008)

    Book  Google Scholar 

  66. Vafai, K.: Handbook of Porous Media, 2nd edn. CRC Press/Taylor and Francis, Boca Raton (2005)

    Book  Google Scholar 

  67. Yovanovich, M.M.: Conduction and thermal contact resisteances (conductances). In: Rohsenow, W.M., Hartnett, J.P., Cho, Y.I. (eds.) Handbook of Heat Transfer. McGraw Hill, Boston (1998)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) for supporting this work, and are also grateful to the authors of the references in this paper that helped in the improvement of quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. B. de Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Lima, A.G.B., Farias Neto, S.R., Silva, W.P. (2012). Heat and Mass Transfer in Porous Materials with Complex Geometry: Fundamentals and Applications. In: Delgado, J. (eds) Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21966-5_7

Download citation

Publish with us

Policies and ethics