Skip to main content

A Compressed Sensing Approach for MR Tissue Contrast Synthesis

  • Conference paper
Information Processing in Medical Imaging (IPMI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6801))

Abstract

The tissue contrast of a magnetic resonance (MR) neuroimaging data set has a major impact on image analysis tasks like registration and segmentation. It has been one of the core challenges of medical imaging to guarantee the consistency of these tasks regardless of the contrasts of the MR data. Inconsistencies in image analysis are attributable in part to variations in tissue contrast, which in turn arise from operator variations during image acquisition as well as software and hardware differences in the MR scanners. It is also a common problem that images with a desired tissue contrast are completely missing in a given data set for reasons of cost, acquisition time, forgetfulness, or patient comfort. Absence of this data can hamper the detailed, automatic analysis of some or all data sets in a scientific study. A method to synthesize missing MR tissue contrasts from available acquired images using an atlas containing the desired contrast and a patch-based compressed sensing strategy is described. An important application of this general approach is to synthesize a particular tissue contrast from multiple studies using a single atlas, thereby normalizing all data sets into a common intensity space. Experiments on real data, obtained using different scanners and pulse sequences, show improvement in segmentation consistency, which could be extremely valuable in the pooling of multi-site multi-scanner neuroimaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazin, P.L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. on Medical Imaging 26(4), 487–496 (2007)

    Article  Google Scholar 

  2. Bezdek, J.C.: A Convergence Theorem for the Fuzzy ISO-DATA Clustering Algorithms. IEEE Trans. on Pattern Anal. Machine Intell. 20(1), 1–8 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. on Pure and Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christensen, J.D.: Normalization of brain magnetic resonance images using histogram even-order derivative analysis. Mag. Res. Imaging 21(7), 817–820 (2003)

    Article  Google Scholar 

  5. Clark, K.A., Woods, R.P., Rottenber, D.A., Toga, A.W., Mazziotta, J.C.: Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images. NeuroImage 29(1), 185–202 (2006)

    Article  Google Scholar 

  6. Cocosco, C.A., Kollokian, V., Kwan, R.K.S., Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database. NeuroImage 5(4), S425 (1997), http://www.bic.mni.mcgill.ca/brainweb/

    Google Scholar 

  7. Deichmann, R., Good, C.D., Josephs, O., Ashburner, J., Turner, R.: Optimization of 3-D MP-RAGE Sequences for Structural Brain Imaging. NeuroImage 12(3), 112–127 (2000)

    Article  Google Scholar 

  8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of Royal Stat. Soc. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elad, M., Bruckstein, A.M.: A Generalized Uncertainty Principle and Sparse Representation in Pairs of Bases. IEEE Trans. Inf. Theory 48(9), 2558–2567 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fischl, B., Salat, D.H., van der Kouwe, A.J.W., Makris, N., Segonne, F., Quinn, B.T., Dale, A.M.: Sequence-independent segmentation of magnetic resonance images. NeuroImage 23(1), 69–84 (2004)

    Article  Google Scholar 

  12. Friedman, L., Stern, H., Brown, G.G., Mathalon, D.H., Turner, J., Glover, G.H., Gollub, R.L., Lauriello, J., Lim, K.O., Cannon, T., Greve, D.N., Bockholt, H.J., Belger, A., Mueller, B., Doty, M.J., He, J., Wells, W., Smyth, P., Pieper, S., Kim, S., Kubicki, M., Vangel, M., Potkin, S.G.: Test-Retest and Between-Site Reliability in a Multicenter fMRI Study. Human Brain Mapping 29(8), 958–972 (2008)

    Article  Google Scholar 

  13. Han, X., Fischl, B.: Atlas Renormalization for Improved Brain MR Image Segmentation Across Scanner Platforms. IEEE Trans. Med. Imag. 26(4), 479–486 (2007)

    Article  Google Scholar 

  14. He, R., Datta, S., Tao, G., Narayana, P.A.: Information measures-based intensity standardization of MRI. In: Intl. Conf. Engg. in Med. and Biology Soc., pp. 2233–2236 (August 2008)

    Google Scholar 

  15. Jager, F., Nyul, L., Frericks, B., Wacker, F., Hornegger, J.: Whole Body MRI Intensity Standardization. In: Bildverarbeitung für die Medizin 2008. Informatik aktuell, ch. 20, Springer, Heidelberg (2007)

    Google Scholar 

  16. Kawas, C., Gary, S., Brookmeyer, R., Fozard, J., Zonderman, A.: Age-specific incidence rates of Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology 54(11), 2072–2077 (2000)

    Article  Google Scholar 

  17. Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated Model-Based Tnumber Classification of MR Images of the Brain. IEEE Trans. on Med. Imag. 18(10), 897–908 (1999)

    Article  Google Scholar 

  18. Madabhushi, A., Udupa, J.K.: New methods of MR image intensity standardization via generalized scale. Med. Phys. 33(9), 3426–3434 (2006)

    Article  Google Scholar 

  19. Nyul, L.G., Udupa, J.K.: On Standardizing the MR Image Intensity Scale. Mag. Res. in Medicine 42(6), 1072–1081 (1999)

    Article  Google Scholar 

  20. Osborne, M.R., Presnell, B., Turlach, B.A.: A new approach to variable selection in least squares problems. IMA J. Numerical Analysis 20(3), 389–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prince, J.L., Tan, Q., Pham, D.L.: Optimization of MR Pulse Sequences for Bayesian Image Segmentation. Medical Physics 22(10), 1651–1656 (1995)

    Article  Google Scholar 

  22. Rohde, G.K., Aldroubi, A., Dawant, B.M.: The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Trans. on Med. Imag. 22, 1470–1479 (2003)

    Article  Google Scholar 

  23. Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. J. Royal Stat. Soc. 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53, 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weisenfeld, N.I., Warfield, S.K.: Normalization of Joint Image-Intensity Statistics in MRI Using the Kullback-Leibler Divergence. In: Intl. Symp. on Biomed. Imag (ISBI), vol. 1, pp. 101–104 (April 2004)

    Google Scholar 

  26. Yang, J., Wright, J., Huang, T., Ma, Y.: Image Super-Resolution Via Sparse Representation. IEEE Trans. Image. Proc. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roy, S., Carass, A., Prince, J. (2011). A Compressed Sensing Approach for MR Tissue Contrast Synthesis. In: Székely, G., Hahn, H.K. (eds) Information Processing in Medical Imaging. IPMI 2011. Lecture Notes in Computer Science, vol 6801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22092-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22092-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22091-3

  • Online ISBN: 978-3-642-22092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics