Skip to main content

Finite Deformation Thermomechanical Contact Homogenization Framework

  • Chapter
Trends in Computational Contact Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 58))

  • 2094 Accesses

Abstract

A finite deformation homogenization framework is developed to predict the macroscopic thermal response of contact interfaces between rough surface topographies. The overall homogenization framework transfers macroscopic contact variables such as surfacial stretch, pressure and heat flux as boundary conditions on a test sample within a micromechanical interface testing procedure. An analysis of the thermal dissipation within the test sample reveals a thermodynamically consistent identification for the macroscopic thermal contact conductance parameter that enables the solution of a homogenized thermomechanical contact boundary value problem based on standard computational approaches. The homogenized contact response effectively predicts a temperature jump across the macroscale contact interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayers, G.H.: Cylindrical thermal contact conductance. Master’s Thesis, Texas A&M University, College Station, Texas, USA (2003)

    Google Scholar 

  2. Bahrami, M., Yovanovich, M.M., Marotta, E.E.: Thermal joint resistance of polymer-metal rough interfaces. Journal of Electronic Packaging 128, 23–29 (2006)

    Article  Google Scholar 

  3. Chadwick, P., Creasy, C.F.M.: Modified entropic elasticity of rubberlike materials. Journal of the Mechanics and Physics of Solids 32(5), 337–357 (1984)

    Article  MATH  Google Scholar 

  4. Chung, D.D.L.: Factors that goven the performance of thermal interface materials. Journal of Electronic Materials 38(1), 175–192 (2009)

    Article  Google Scholar 

  5. Gibbins, J.: Thermal contact resistance of polymer interfaces. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada (2006)

    Google Scholar 

  6. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2001)

    Google Scholar 

  7. Jackson, R.L., Bhavnani, S.H., Ferguson, T.P.: A multiscale model of thermal contact resistance between rough surfaces. Journal of Heat Transfer 130, 81301 (2008)

    Article  Google Scholar 

  8. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  9. Madhusudana, C.V.: Thermal Contact Conductance. Springer, New York (1996)

    Google Scholar 

  10. Prasher, R.: Thermal interface materials: Historical perspective, status and future directions. Proceedings of the IEEE 94(8), 1571–1586 (2006)

    Article  Google Scholar 

  11. Prasher, R.S., Matayabas, J.C.: Thermal contact resistance of cured gel polymeric thermal interface material. IEEE Transactions on Components and Packaging Technologies 27(4), 702–709 (2004)

    Article  Google Scholar 

  12. Sadowski, P., Stupkiewicz, S.: A model of thermal contact conductance at high real contact area fractions. Wear (2009), doi:10.1016/j.wear.2009.06.040

    Google Scholar 

  13. Salti, B., Laraqi, N.: 3-D numerical modeling of heat transfer between two sliding bodies: temperature and thermal contact resistance. International Journal of Heat and Mass Transfer 42, 2363–2374 (1999)

    Article  MATH  Google Scholar 

  14. Song, S., Yovanovich, M.M., Nho, K.: Thermal gap conductance of conforming surfaces in contact. Journal of Heat Transfer 115, 533–540 (1993)

    Article  Google Scholar 

  15. Temizer, I., Wriggers, P.: A multiscale contact homogenization technique for the modeling of third bodies in the contact interface. Computer Methods in Applied Mechanics and Engineering 198, 377–396 (2008)

    Article  MathSciNet  Google Scholar 

  16. Thompson, M.K.: A multi-scale iterative approach for finite element modeling of thermal contact resistance. PhD Thesis, Massachusetts Institute of Technology, Boston, Massachusetts, USA (2007)

    Google Scholar 

  17. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  18. Wriggers, P., Reinelt, J.: Multi-scale approach for frictional contact of elastomers on rough rigid surfaces. Computer Methods in Applied Mechanics and Engineering 198, 1996–2008 (2009)

    Article  MathSciNet  Google Scholar 

  19. Zavarise, G., Borri-Brunetto, M., Paggi, M.: On the reliability of microscopical contact models. Wear 257, 229–245 (2004)

    Article  Google Scholar 

  20. Zavarise, G., Wriggers, P., Stein, E., Schrefler, B.A.: Real contact mechanisms and finite element formulation – A coupled thermomechanical approach. International Journal for Numerical Methods in Engineering 35, 767–785 (1992)

    Article  MATH  Google Scholar 

  21. Zhang, X., Chong, P., Fujiwara, S., Fujii, M.: A new method for numerical simulation of thermal contact resistance in cylindrical coordinates. International Journal of Heat and Mass Transfer 47, 1091–1098 (2004)

    Article  MATH  Google Scholar 

  22. Temizer, İ., Wriggers, P.: Thermal contact conductance characterization via computational contact homogenization: A finite deformation theory framework. International Journal for Numerical Methods in Engineering (1), 24–58, doi:10.1002/nme.2822

    Google Scholar 

  23. Temizer, I.: Thermomechanical contact homogenization with random rough surfaces and microscopic contact resistance. Tribology International 44, 114–124, doi:10.1016/j.triboint.2010.09.011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Temizer, İ., Wriggers, P. (2011). Finite Deformation Thermomechanical Contact Homogenization Framework. In: Zavarise, G., Wriggers, P. (eds) Trends in Computational Contact Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22167-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22167-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22166-8

  • Online ISBN: 978-3-642-22167-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics