Skip to main content

Extrasolar Moons

  • Chapter
  • First Online:
The Transits of Extrasolar Planets with Moons

Part of the book series: Springer Theses ((Springer Theses))

  • 537 Accesses

Abstract

Extrasolar moons, or “exomoons”, offer a significant challenge to astronomers given their anticipated (From a Copernican perspective) low masses and radii. However, there are many motivations for looking for such objects, which I will overview here.

I think we’re going to the Moon because it’s in the nature of the human being to face challenges Neil Armstrong, Apollo mission press conference, 1969

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From a Copernican perspective

  2. 2.

    Although, of course, no examples of this exist in the Solar System.

  3. 3.

    Multiple moons are more complex due to the dynamical interactions which occur between the moons.

References

  1. D.M. Williams, J.F. Kasting, R.A. Wade, Habitable moons around extrasolar giant planets. Nature 385, 234–236 (1997)

    Article  ADS  Google Scholar 

  2. C.A. Scharf, The potential for tidally heated icy and temperate Moons around exoplanets. ApJ 648, 1196–1205 (2006)

    Article  ADS  Google Scholar 

  3. J. Laskar, P. Robutel, The chaotic obliquity of the planets. Nature 361, 608–612 (1993)

    Article  ADS  Google Scholar 

  4. C.R. Benn, The Moon and the origin of life. EM&P 85, 61–66 (2001)

    Google Scholar 

  5. A.G.W. Cameron, W. Benz, The origin of the moon and the single impact hypothesis-IV. Icarus 92, 204–216 (1991)

    Article  ADS  Google Scholar 

  6. S.R. Taylor, Solar system evolution: a new perspective. An inquiry into the chemical composition, origin, and evolution of the solar system. (Cambridge University Press, NewYork, 1992)

    Google Scholar 

  7. J. Pearson, New Scientist 2508, 38–40 (1988)

    Google Scholar 

  8. C.F. Chyba, Impact delivery and erosion of planetary oceans in the early inner solar system. Nature 343, 129–133 (1900)

    Article  ADS  Google Scholar 

  9. R.T. Rood, J.S. Trefil, Are We Alone: The Possibility of Extraterrestrial Eivilizations. (Scribner, NewYork, 1981)

    Google Scholar 

  10. J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996)

    Article  ADS  Google Scholar 

  11. A.P. Boss, Convective cooling of protoplanetary disks and rapid giant planet formation. ApJ 610, 456–463 (2004)

    Article  ADS  Google Scholar 

  12. R.M. Canup, W.R. Ward, Formation of the galilean satellites: conditions of accretion. AJ 124, 3404–3423 (2002)

    Article  ADS  Google Scholar 

  13. D. Jewitt, N. Haghighipour, Irregular satellites of the planets: products of capture in the early solar system. Ann. Rev. A&A 45, 261–295 (2007)

    Article  ADS  Google Scholar 

  14. C.B. Agnor, D.P. Hamilton, Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441, 192–194 (2006)

    Article  ADS  Google Scholar 

  15. R.M. Canup, W.R. Ward, A common mass scaling for satellite systems of gaseous planets. Nature 441, 834–839 (2006)

    Article  ADS  Google Scholar 

  16. P. Podsiadlowski, S. Rappaport, J.M. Fregeau, R.A. Mardling, On the possibility of tidal formation of binary planets around ordinary stars (ArXiv e-prints, 2010)

    Google Scholar 

  17. J.W. Barnes, D.P. O’Brien, Stability of satellites around close-in extrasolar giant planets. ApJ 575, 1087–1093 (2002)

    Article  ADS  Google Scholar 

  18. F. Namouni, The fate of Moons of close-in giant exoplanets. ApJL 719, L145–L147 (2010)

    Article  ADS  Google Scholar 

  19. I.O. Yarkovsky, Hypothese cinetique de la Gravitation universelle et connexion avec la formation des elements chimiques (Kinetic hypothesis of the universal gravitation and its connection with the formation of chemical elements), 1st edn. (Chez lAuteur, Moscou, 1888)

    Google Scholar 

  20. R.C. Domingos, O.C. Winter, T. Yokoyama, Stable satellites around extrasolar giant planets. MNRAS 373, 1227–1234 (2006)

    Article  ADS  Google Scholar 

  21. J.R. Donnison, The Hill stability of inclined small mass binary systems in three-body systems with special application to triple star systems, extrasolar planetary systems and Binary Kuiper Belt systems. Planet. Space Sci. 58, 1169–1179 (2010). doi:10.1016/j.pss.2010.04.009

  22. G.J. Consolmagno, Ice-rich moons and the physical properties of ice. J. Phys. Chem. 87, 4204–4208 (1983)

    Article  ADS  Google Scholar 

  23. D. Valencia, R.J. O’Connell, D. Sasselov, Internal structure of massive terrestrial planets. Icarus 181, 545–554 (2006)

    Article  ADS  Google Scholar 

  24. C. Liebig, J. Wambsganss, Detectability of extrasolar moons as gravitational microlenses. A&A 520, A68+ (2010)

    Google Scholar 

  25. K.M. Lewis, P.D. Sackett, R.A. Mardling, Possibility of detecting moons of pulsar planets through time-of-arrival analysis. ApJL 685, L153–L156 (2008)

    Article  ADS  Google Scholar 

  26. van W. Straten, M. Bailes, M. Britton, S.R. Kulkarni, S.B. Anderson, R.N. Manchester, J. Sarkissian, A test of general relativity from the three-dimensional orbital geometry of a binary pulsar. Nature 412, 158–160 (2001)

    Article  ADS  Google Scholar 

  27. A. Wolszczan, D.A. Frail, A planetary system around the millisecond pulsar PSR1257+12. Nature 355, 145–147 (1992)

    Article  ADS  Google Scholar 

  28. D.C. Backer, R.S. Foster, S. Sallmen, A second companion of the millisecond pulsar 1620–26. Nature 365, 817–819 (1993)

    Article  ADS  Google Scholar 

  29. R. Goullioud, J.H. Catanzarite, F.G. Dekens, M. Shao, J.C. Marr, IV. Overview of the sim planetquest light mission concept. society of photo-optical instrumentation engineers (SPIE) conference series, vol. 7013 of society of photo-optical instrumentation engineers (SPIE) conference series (2008). doi: 10.1117/12.789988

    Google Scholar 

  30. M.H.M. Morais, A.C.M. Correia, Stellar wobble caused by a binary system: can it really be mistaken as an extra-solar planet? A&A 491, 899–906 (2008). doi: 10.1051/0004-6361:200810741

    Google Scholar 

  31. R. Martínez-Arnáiz, J. Maldonado, D. Montes, C. Eiroa, B. Montesinos, Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter. A&A 520, A79+ (2010)

    Google Scholar 

  32. J.P. Beaulieu, D.P. Bennett, V. Batista, A. Cassan , D. Kubas, P. Fouqué, E. Kerrins, S. Mao, J. Miralda-Escudé, J. Wambsganss, B.S. Gaudi, A. Gould, S. Dong, EUCLID: Dark Universe Probe and Microlensing Planet Hunter. in ed. by V. Coudé Du Foresto, D.M. Gelino, I. Ribas. Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific Conference Series, vol. 430 (2010), p. 266–+

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kipping .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kipping, D.M. (2011). Extrasolar Moons. In: The Transits of Extrasolar Planets with Moons. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22269-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22269-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22268-9

  • Online ISBN: 978-3-642-22269-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics