Skip to main content

Effect of Temperature and Gate Stack on the Linearity and Analog Performance of Double Gate Tunnel FET

  • Conference paper
Trends in Network and Communications (WeST 2011, NeCoM 2011, WiMoN 2011)

Abstract

The linearity and analog performance of a Silicon Double Gate Tunnel Field Effect Transistor (DG-TFET) is investigated and the impact of elevated temperature on the device performance degradation has been studied. The impact on the device performance due to the rise in temperature has also been investigated for the case of Silicon DG-MOSFET and a comparison with DG-TFET is made. The parameters governing the analog performance and linearity has been studied and the impact of a gate stack (GS) architecture has also been investigated for the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nauta, B., Annema, A.-J.: Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies. In: Proceedings of 31st European Solid-State Circuits Conference, ESSCIRC, pp. 45–53 (2005)

    Google Scholar 

  2. Zhang, Q., Seabaugh, A.: Can the Interband Tunnel FET Outperform Si CMOS? In: Proceedings of Device Research Conference, pp. 73–74 (2008)

    Google Scholar 

  3. Kim, S.H., Kam, H., Hu, C., Liu, T.J.K.: Germanium-source tunnel field effect transistors with record high ION/IOFF. In: Symposium on VLSI Technology, pp. 178–179 (2009)

    Google Scholar 

  4. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.K.: Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28, 743–745 (2007)

    Article  Google Scholar 

  5. Mookerjea, S., Datta, S.: Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25V supply voltage logic applications. In: Proceedings of 63rd Device Research Conference, pp. 47–48 (2008)

    Google Scholar 

  6. Born, M., Bhuwalka, K.K., Schindler, M., Abilene, U., Schmidt, M., Sulima, T., Eisele, I.: Tunnel FET: A CMOS Device for high Temperature Applications. In: 25th International Conference on Microelectronics, pp. 124–127 (2006)

    Google Scholar 

  7. Guo, P.-F., Yang, L.-T., Yang, Y., Fan, L., Han, G.-Q., Samudra, G.S., Yeo, Y.-C.: Tunneling Field-Effect Transistor: Effect of Strain and Temperature on Tunneling Current. IEEE Electron Device Letters 30, 981–983 (2009)

    Article  Google Scholar 

  8. Wan, J., Royer, C.L., Zaslavsky, A., Cristoloveanu, S.: SOI TFETs: Suppression of ambipolar leakage and low-frequency noise behavior. In: Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 341–344 (2010)

    Google Scholar 

  9. Nirschl, T., Wang, P.-F., Hansch, W., Schmitt-Landsiedel, D.: The tunneling field effect transistors (TFET): the temperature dependence, the simulation model, and its application. In: Proceedings of the 2004 International Symposium on Circuits and Systems, pp. 713–716 (2004)

    Google Scholar 

  10. Anghel, C., Chilagani, P., Amara, A., Vladimirescu, A.: Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric. Applied Physics Letters 96, 122104 (2010)

    Article  Google Scholar 

  11. Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high- k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  12. ATLAS Device Simulation Software, Silvaco Int., Version 5.14.0.R

    Google Scholar 

  13. Woerlee, P.H., Knitel, M.J., van Langevelde, R., Klaassen, D.B.M., Tiemeijer, L.F., Scholten, A.J., Zegers-van Duijnhoven, A.T.A.: RF-CMOS performance trends. IEEE Transactions on Electron Devices 48(8), 1776–1782 (2001)

    Article  Google Scholar 

  14. Ma, W., Kaya, S.: Study of RF Linearity in sub-50nm MOSFETs using Simulations. Journal of Computational Electronics 2, 347–352 (2003)

    Article  Google Scholar 

  15. Kaya, S., Ma, W., Asenov, A.: Design of DG-MOSFETs for High Linearity Performance. In: IEEE International SOI Conference, pp. 68–69 (2003)

    Google Scholar 

  16. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narang, R., Saxena, M., Gupta, R.S., Gupta, M. (2011). Effect of Temperature and Gate Stack on the Linearity and Analog Performance of Double Gate Tunnel FET. In: Wyld, D.C., Wozniak, M., Chaki, N., Meghanathan, N., Nagamalai, D. (eds) Trends in Network and Communications. WeST NeCoM WiMoN 2011 2011 2011. Communications in Computer and Information Science, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22543-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22543-7_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22542-0

  • Online ISBN: 978-3-642-22543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics