Skip to main content

The Effect of the Measuring Tip and Image Reconstruction

  • Chapter
  • First Online:
Kelvin Probe Force Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 48))

  • 2356 Accesses

Abstract

In all electrostatic force-based microscopy types, the tip has a profound effect on the measured image because the measured forces are long range. In this chapter, we review most of the important literature devoted to this subject in the last two decades. It is shown that the combined effect of the cantilever, the tip cone and the tip apex is well understood for both conducting and semiconducting surfaces. In KPFM measurements conducted in air, the lateral resolution is in the range of 20–50 nm, but the measured potential is reduced by almost an order of magnitude relative to the theoretical value. In measurements conducted under UHV conditions the resolution is improved to around 10 nm, but the value of the measured potential is still significantly affected by the cantilever. In the second part, it is shown that today KPFM images can be reconstructed, using convolution to overcome the effect of the measuring tip and to give the actual sample surface potential. In addition, it is found that the exact tip apex shape is not an important factor in KPFM measurements conducted at tip–sample distances larger than 1.5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Sadewasser, 5th International Conference on Non-Contact Atomic Force Microscopy, Montreal, 2002

    Google Scholar 

  2. O. Cherniavskaya, L. Chen, V. Weng, L. Yuditsky, L.E. Brus, J. Phys. Chem. B 107, 1525 (2003)

    Article  CAS  Google Scholar 

  3. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)

    Article  Google Scholar 

  4. T. Hochwitz, A.K. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Vac. Sci. Technol. B 14, 457 (1996)

    Article  CAS  Google Scholar 

  5. S. Sadewasser, Th. Glatzel, R. Shikler, Y. Rosenwaks, M.Ch. Lux-Steiner, Appl. Surf. Sci. 210, 32 (2003)

    Article  CAS  Google Scholar 

  6. S. Belaidi, P. Girard, G. Leveque, J. Appl. Phys. 81, 1023 (1998)

    Article  Google Scholar 

  7. S. Belaidi, F. Lebon, P. Girard, G. Leveque, S. Pagano, Appl. Phys. A 66, S239 (1998)

    Article  CAS  Google Scholar 

  8. G. Leveque, P. Cadet, R. Arinero, Phys. Rev. B 71, 205419 (2005)

    Article  Google Scholar 

  9. S. Hudlet, M. Saint Jean, C. Guthmann, J. Berger, Eur. Phys. J. B 2, 5 (1998)

    Article  CAS  Google Scholar 

  10. M. Saint Jean, S. Hudlet, C. Guthmann, J. Berger, J. Appl. Phys. 86, 2545 (1999)

    Article  Google Scholar 

  11. D. Ziegler, N. Naujoks, A. Stemmer, Rev. Sci. Instrum. 79, 063704 (2008)

    Article  Google Scholar 

  12. Th. Glatzel, S. Sadewasser, M.Ch. Lux-Steiner, Appl. Sur. Sci. 210, 84 (2003)

    Article  CAS  Google Scholar 

  13. U. Zerweck, Ch. Loppacher, T. Otto, S. Grafström, L.M. Eng, Phys. Rev. B 71, 125424 (2005)

    Article  Google Scholar 

  14. H.O. Jacobs, P. Leuchtmann, O.J. Homan, A. Stemmer, J. Appl. Phys. 84, 1168 (1998)

    Article  CAS  Google Scholar 

  15. H.O. Jacobs, A. Stemmer, Surf. Interface Anal. 27, 361 (1999)

    Article  CAS  Google Scholar 

  16. Y. Rosenwaks, R. Shikler, Th. Glatzel, S. Sadewasser, Phys. Rev. B 70, 085320 (2004)

    Article  Google Scholar 

  17. R. Shikler, PhD Thesis, Tel-Aviv University (2003)

    Google Scholar 

  18. E. Strassburg, A. Boag, Y. Rosenwaks, Rev. Sci. Instrum. 76, 083705 (2005)

    Article  Google Scholar 

  19. J. Colchero, A. Gil, A.M. Baró, Phys. Rev. B 64, 245403 (2001)

    Article  Google Scholar 

  20. T. Machleidt, E. Sparrer, D. Kapusi, K.-H. Franke, Meas. Sci. Technol. 20, 084017 (2009)

    Article  Google Scholar 

  21. Th. Glatzel, L. Zimmerli, S. Koch, B. Such, S. Kawai, E. Meyer, Nanotechnology 20, 264016 (2009)

    Article  Google Scholar 

  22. S. Sadewasser, C. Leendertz, F. Streicher, M.Ch. Lux-Steiner, Nanotechnology 20, 505503 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge generous support to this work by Grant No. 2008140 from United States-Israel Binational Science Foundation, grant No. 32/08 from the Israel science foundation, and we acknowledge funding from the German Ministry for the Environment, Nature Conservation and Nuclear safety under contract # 0327559H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Rosenwaks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenwaks, Y., Elias, G., Strassbourg, E., Schwarzman, A., Boag, A. (2012). The Effect of the Measuring Tip and Image Reconstruction. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22566-6_4

Download citation

Publish with us

Policies and ethics