Skip to main content

Performances of Navier-Stokes Solver on a Hybrid CPU/GPU Computing System

  • Conference paper
Parallel Computing Technologies (PaCT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6873))

Included in the following conference series:

Abstract

A computational code for the numerical integration of the incompressible Navier-Stokes equations for the execution of accurate calculations with the approach of the Direct Numerical Simulation (DNS), is implemented on a specially-assembled hybrid CPU/GPU computing system. The computational code is based on a mixed spectral-finite difference numerical technique, and is implemented onto the plane-channel computing domain, for the study of wall-bounded turbulence. The computing system includes one Intel Corei7 (quad-core) processor, and two Nvidia C-1060 Tesla devices. High-resolution numerical simulations of the turbulent flow in the plane-channel domain are executed at wall-shear-velocity Reynolds number 200, and the performances of the code are reported in terms of parallel-machine metrics. Sample results of the simulations are also reported, in which some details are emphasized of the scientific information that have been obtained, mainly due to the high resolution at which the calculations have been executed, in virtue of the availability of such a powerful computing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonsi, G.: Reynolds-Averaged Navier-Stokes equations for turbulence modeling. Appl. Mech. Rev. 62, 40802-1– 40802-20 (2009)

    Article  Google Scholar 

  2. Kirk, D., Hwu, W.W.: Programming massively parallel processors: a hands-on approach. Morgan Kaufmann, San Francisco (2010)

    Google Scholar 

  3. NVIDIA CUDA C Programming Guide. Version 3.2 (2010), http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf

  4. Alfonsi, G., Passoni, G., Pancaldo, L., Zampaglione, D.: A spectral-finite difference solution of the Navier-Stokes equations in three dimensions. Int. J. Num. Meth. Fluids 28, 129 (1998)

    Article  MATH  Google Scholar 

  5. Passoni, G., Alfonsi, G., Galbiati, M.: Analysis of hybrid algorithms for the Navier-Stokes equations with respect to hydrodynamic stability theory. Int. J. Num. Meth. Fluids 38, 1069 (2002)

    Article  MATH  Google Scholar 

  6. Passoni, G., Alfonsi, G., Tula, G., Cardu, U.: A wavenumber parallel computational code for the numerical integration of the Navier-Stokes equations. Parall. Comput. 25, 593 (1999)

    Article  MATH  Google Scholar 

  7. Passoni, G., Cremonesi, P., Alfonsi, G.: Analysis and implementation of a parallelization strategy on a Navier-Stokes solver for shear flow simulations. Parall. Comput. 27, 1665 (2001)

    Article  MATH  Google Scholar 

  8. NVIDIA CUDA CUFFT Library. Version 3.2 (2010), http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUFFT_Library.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alfonsi, G., Ciliberti, S.A., Mancini, M., Primavera, L. (2011). Performances of Navier-Stokes Solver on a Hybrid CPU/GPU Computing System. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2011. Lecture Notes in Computer Science, vol 6873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23178-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23178-0_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23177-3

  • Online ISBN: 978-3-642-23178-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics