Skip to main content

Information, Noise and Communication: Thresholds as Controlling Elements in Development

  • Chapter
  • First Online:
Biocommunication of Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 14))

Abstract

Organisms are dependent on the continual transmission of information both within cells and from outside them. Information is concerned with the conveyance of signals that require both a transmitter and a receiver able to decide what is sent. Accuracy in transmission is degraded by noise, and the evidence that shows noisiness in genetic circuitry is described. Reliable noise coupled with positive feedback constructs probabilistic thresholds amongst a population. In higher plants, stochastic distribution of thresholds enables quantitative variation amongst cells, tissues or plants to variable strengths of signals. It is the function of information to be communicated, but the gel structure of the cytoplasm together with the ordering by structured water might instead increase noise in transmission by interfering with the necessary movement of molecules in signal transduction. To reduce potential noise in signal transmission and transduction, it is suggested that abrupt phase transitions in microdomains of the cytoplasmic gel structure are induced by cytoplasmic calcium, amongst other signals. Plasmodesmata also contain actin gels, and communication between cells may simply be controlled by abrupt gel phase transitions. Two threshold phenomena are thus seen in plant cells important during development. The first involves noise and positive feedback; the second, gel phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Altschuler SJ, Angenent SB, Wang Y, Wu LF (2008) On the spontaneous emergence of cell polarity. Nature 454:886–889

    Article  PubMed  CAS  Google Scholar 

  • Bialek W, Setayeshgar S, Callan CG (2005) Physical limits to biochemical signalling. Proc Natl Acad Sci USA 102:10040–10045

    Article  PubMed  CAS  Google Scholar 

  • Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF et al (2006) Phenotypic consequences of promoter transcriptional noise. Mol Cell 24:853–865

    Article  PubMed  CAS  Google Scholar 

  • Bradford KJ, Trewavas AJ (1994) Sensitivity thresholds and variable time scales in plant hormone action. Plant Physiol 105:1029–1036

    PubMed  CAS  Google Scholar 

  • Bray D (1992) Cell movements. Garland, New York

    Google Scholar 

  • Bray D, Duke T (2004) Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu Rev Biophys Biomol Struct 33:53–73

    Article  PubMed  CAS  Google Scholar 

  • Briere C, Goodwin B (1988) Geometry and dynamics of tip morphogenesis in Acetabularia. J Theor Biol 131:461–475

    Article  Google Scholar 

  • Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci USA 96:12920–12934

    Article  Google Scholar 

  • Carvagal PA, Lanier TC (2006) The unfolded protein state revisited. In: Pollack GH, Cameron IL, Wheatley DN (eds) Water and the cell. Springer, Dordrecht, pp 235–252

    Chapter  Google Scholar 

  • Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373:49–52

    Article  PubMed  CAS  Google Scholar 

  • Collins JJ, Imhoff TT, Grigg P (1996) Noise-enhanced tactile sensation. Nature 383:770

    Article  PubMed  CAS  Google Scholar 

  • Costanzo M, Baryshnikova A, Bellay J, Kim Y et al (2010) The genetic landscape of a cell. Science 327:425–431

    Article  PubMed  CAS  Google Scholar 

  • Dahal P, Still DW, Bradford KJ (1994) Mannanase activity in tomato endosperm caps does not correlate with germination timing. Plant Physiol 105:S-165

    Google Scholar 

  • Ding B, Kwon M-O, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164

    Article  Google Scholar 

  • Elowitz MB, Levine AJ, Siggle ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  PubMed  CAS  Google Scholar 

  • Erwee MG, Goodwin PB (1983) Characterisation of the Egeria densa Planc. leaf symplast. Planta 158:320–328

    Article  CAS  Google Scholar 

  • Faulkner CL, Blackman LM, Collings DA, Cordwell SJ, Overall RL (2009) Anti-tropomyosin antibodies co-localise with actin filaments and label plasmodesmata. Eur J Cell Biol 88:357–369

    Article  PubMed  CAS  Google Scholar 

  • Federoff N, Fontana W (2002) Small numbers of big molecules. Science 297:1129–1131

    Article  Google Scholar 

  • Ficklin SP, Luo F, Feltus FA (2010) The association of multiple interacting genes with specific phenotypes in rice using gene co-expression networks. Plant Physiol 154:13–24

    Article  PubMed  CAS  Google Scholar 

  • Firn RD, Digby J (1980) The establishment of tropic curvatures in plants. Annu Rev Plant Physiol 31:131–148

    Article  Google Scholar 

  • Garlid KD (2000) The state of water in biological systems. Int Rev Cytol 192:281–302

    Article  PubMed  CAS  Google Scholar 

  • Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal E, Dekel E, Yarnitsky T, Liron Y, Polak P, Lahav G, Alon U (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2:0033

    Article  PubMed  Google Scholar 

  • Gilroy S, Trewavas AJ (2001) Signal processing and transduction in plant cells: the end of the beginning. Nat Rev Mol Cell Biol 2:307–314

    Article  PubMed  CAS  Google Scholar 

  • Golding I, Paulsson J, Zawilski SM, Cox EE (2005) Real time kinetics of gene activity in bacteria. Cell 123:1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Goodwin BC, Pateromichelakis S (1979) The role of electrical fields, ions and the cortex in the morphogenesis of Acetabularia. Planta 145:427–435

    Article  CAS  Google Scholar 

  • Goodwin BC, Skelton JL, Kirk-Bell SM (1983) Control of regeneration and morphogenesis by divalent cations in Acetabularia meditteranea. Planta 157:1–7

    Article  CAS  Google Scholar 

  • Ito T, Suzuki A, Stossel TP (1991) Regulation of water flow by actin-binding protein induced by actin gelation. Biophys J 61:1301–1305

    Article  Google Scholar 

  • Kaempner ES, Miller JH (1968) The molecular biology of Euglena gracilis: IV cellular stratification by centrifuging. Exp Cell Res 51:141–149

    Article  Google Scholar 

  • Kozlov PV (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer 24:651–666

    Article  CAS  Google Scholar 

  • Lestas I, Vinnicombe G, Paulsson J (2010) Fundamental limits on the suppression of molecular fluctuations. Nature 467:174–178

    Article  PubMed  CAS  Google Scholar 

  • Levens D, Gupta A (2010) Reliable noise. Science 327:1088–1091

    Article  PubMed  CAS  Google Scholar 

  • Levsky JM, Shenoy SM, Pezo RC, Singer RH (2002) Single-cell gene expression profiling. Science 297:836–840

    Article  PubMed  CAS  Google Scholar 

  • Ling GN (1992) A revolution in the physiology of the living cell. Kreiger Publishing Company, Florida

    Google Scholar 

  • Ling GN (2006) A convergence of experimental and theoretical breakthroughs affirms the PM theory of dynamically structured water on the theory’s 40th birthday. In: Pollack GH, Cameron IL, Wheatley DN (eds) Water and the cell. Springer, Dordrecht, pp 1–53

    Chapter  Google Scholar 

  • Longo D, Hasty J (2006) Dynamics of single cell gene expression. Mol Syst Biol 2:64–74

    Article  PubMed  Google Scholar 

  • Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm, volume, diffusion, intracellular surface area. Int Rev Cytol 192:189–220

    Article  PubMed  CAS  Google Scholar 

  • Mandoli DF (1998) Elaboration of body plan and phase change during development of Acetabularia. Annu Rev Plant Physiol Plant Mol Biol 49:173–198

    Article  PubMed  CAS  Google Scholar 

  • Molineir J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  Google Scholar 

  • Mutwil M, Ysadel B, Schutte M, Loraine A, Ebenhoh O, Person S (2010) Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 152:29–43

    Article  PubMed  CAS  Google Scholar 

  • Newman JRS, Ghaemmaghari S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weismann JS (2006) Single cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–846

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Ehmann B, Furuya M, Schafer E (1993) Cell communication, stochastic cell responses and anthocyanin patterns in mustard cotyledons. Plant Cell 5:541–552

    PubMed  CAS  Google Scholar 

  • Oparka K (2005) Plasmodesmata, vol 18, Ann Plant Rev. Oxford, Wiley-Blackwell

    Book  Google Scholar 

  • Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  PubMed  CAS  Google Scholar 

  • Pearson H (2008) The cellular hullabaloo. Nature 453:150–153

    Article  PubMed  CAS  Google Scholar 

  • Pedraza JM, Paulsson J (2008) Effects of molecular memory and bursting on fluctuations in gene expression. Science 319:339–343

    Article  PubMed  CAS  Google Scholar 

  • Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307:1965–1969

    Article  PubMed  CAS  Google Scholar 

  • Pollack GH (2001) Cells, gels and the engines of life. Ebner and Sons, Seattle, WA

    Google Scholar 

  • Pollack GH, Reitz FB (2001) Phase transitions and molecular motion in the cell. Cell Mol Biol 47:885–900

    PubMed  CAS  Google Scholar 

  • Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single cell level. Science 307:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Shabala SN, Newman IA, Morris J (1997) Oscillations of H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiol 113:111–118

    PubMed  CAS  Google Scholar 

  • Shacklock PS, Read ND, Trewavas AJ (1992) Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature 358:753–755

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sibbersen ED, Mott KA (2010) Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells. Plant Physiol 153:1435–1442

    Article  Google Scholar 

  • Sigal A, Milo R, Cohen A, Geva-Zatorsky N, Klein Y, Liron Y, Rosenfeld N, Danon T, Perzov N, Alon U (2006) Variability and memory of protein levels in human cells. Nature 444:643–646

    Article  PubMed  CAS  Google Scholar 

  • Smart CC, Trewavas AJ (1984) Abscisic acid induced turion formation in Spirodela polyrrhiza L. IV. Comparative ion flux characteristics of the turion and the vegetative frond and the effect of ABA during early turion development. Plant Cell Environ 7:521–539

    CAS  Google Scholar 

  • Smith JA, Martin L (1973) Do cells cycle? Proc Natl Acad Sci USA 70:1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Srere PA (2000) Macromolecular interactions: tracing the roots. Trends Biochem Sci 25:150–153

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single molecule sensitivity in single cells. Science 329:533–538

    Article  PubMed  CAS  Google Scholar 

  • Tasaki I, Byrne PM (1992) Discontinuous volume transitions in ionic gels and their possible involvement in the nerve excitation process. Biopolymers 32(8):1019–23

    Article  PubMed  CAS  Google Scholar 

  • To T-L, Maheshri (2010 Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327:1142–1145

    Article  Google Scholar 

  • Trewavas AJ (1982) Growth substance sensitivity: the limiting factor in plant development. Physiol Plant 55:60–72

    Article  CAS  Google Scholar 

  • Trewavas AJ (1987) Timing and memory processes in seed embryo dormancy—a conceptual paradigm for plant development questions. Bioessays 6:87–92

    Article  Google Scholar 

  • Trewavas AJ (1991) How do plant growth substances work? II. Plant Cell Environ 14:1–12

    Article  CAS  Google Scholar 

  • Trewavas AJ (1992) Growth substances in context: a decade of sensitivity. Biochem Soc Trans 20:102–108

    PubMed  CAS  Google Scholar 

  • Trewavas AJ (1999) How plants learn. Proc Natl Acad Sci USA 96:4216–4218

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  PubMed  CAS  Google Scholar 

  • Tucker EB (1990) Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N, N, N’, N’-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    Article  CAS  Google Scholar 

  • Urry DW (1971) Neutral sites for calcium ion binding to elastin and collagen: a charge neutralisation theory for calcification and its relationship to atherosclerosis. Proc Natl Acad Sci USA 68:810–814

    Article  PubMed  CAS  Google Scholar 

  • Vedral V (2010) Decoding reality: the universe as quantum information. Oxford University Press, Oxford

    Google Scholar 

  • Watterson JG (1987) A role for water in cell structure. Biochem J 248:615–617

    Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  • Wiggins PM (2002) Water in complex environments such as living systems. Phys A 314:465–491

    Google Scholar 

  • Winkel BSJ (2004) Metabolic channelling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Kokufuta E, Yamaguchi T (1999) Beating polymer gels coupled with a non-linear chemical reaction. Chaos 9:260–267

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Probing gene expression in live cells one protein molecule at a time. Science 311:1600–1603

    Google Scholar 

  • Yu H, Braun P, Yildirim MA, Lemmens I et al (2008) High quality binary protein interaction map of the yeast interactome network. Science 322:104–110

    Article  PubMed  CAS  Google Scholar 

  • Zalokar M (1960) Cytochemistry of centrifuged hyphae of Neurospora. Exp Cell Res 19:114–132

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Trewavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trewavas, A. (2012). Information, Noise and Communication: Thresholds as Controlling Elements in Development. In: Witzany, G., Baluška, F. (eds) Biocommunication of Plants. Signaling and Communication in Plants, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23524-5_2

Download citation

Publish with us

Policies and ethics