Skip to main content

Passenger Flow-Oriented Train Disposition

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

Abstract

Disposition management solves the decision problem whether a train should wait for incoming delayed trains or not. This problem has a highly dynamic nature due to a steady stream of update information about delayed trains. A dispatcher has to solve a global optimization problem since his decisions have an effect on the whole network, but he takes only local decisions for subnetworks (for few stations and only for departure events in the near future). In this paper, we introduce a new model for an optimization tool. Our implementation includes as building blocks (1) routines for the permanent update of our graph model subject to incoming delay messages, (2) routines for forecasting future arrival and departure times, (3) the update of passenger flows subject to several rerouting strategies (including dynamic shortest path queries), and (4) the simulation of passenger flows. The general objective is the satisfaction of passengers. We propose three different formalizations of objective functions to capture this goal. Experiments on test data with the train schedule of German Railways and real delay messages show that our disposition tool can compute waiting decisions within a few seconds. In a test with artificial passenger flows it is fast enough to handle the typical amount of decisions which have to be taken within a period of 15 minutes in real time.

This work was supported by the DFG Focus Program Algorithm Engineering, grant MU 1482/4-2. We wish to thank Deutsche Bahn AG for providing us timetable data for scientific use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schöbel, A.: Integer programming approaches for solving the delay management problem. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimization 2004. LNCS, vol. 4359, pp. 145–170. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Berger, A., Gebhardt, A., Müller-Hannemann, M., Ostrowski, M.: Stochastic delay prediction in large train networks. Technical Report 2011/1, Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg (2011)

    Google Scholar 

  3. Meester, L.E., Muns, S.: Stochastic delay propagation in railway networks and phase-type distributions. Transportation Research Part B 41, 218–230 (2007)

    Article  Google Scholar 

  4. Yuan, J.: Stochastic modeling of train delays and delay propagation in stations. PhD thesis. Technische Universiteit Delft, The Netherlands (2006)

    Google Scholar 

  5. van der Meer, D., Goverde, R., Hansen, I.: Prediction of train running times and conflicts using track occupation data. In: Proceedings of 12th WCTR (2010)

    Google Scholar 

  6. Gatto, M., Glaus, B., Jacob, R., Peeters, L., Widmayer, P.: Railway delay management: Exploring its algorithmic complexity. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 199–211. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Gatto, M., Jacob, R., Peeters, L., Schöbel, A.: The computational complexity of delay management. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 227–238. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Schachtebeck, M., Schöbel, A.: To wait or not to wait - and who goes first? Delay management with priority decisions. Transportation Science 44, 307–321 (2010)

    Article  Google Scholar 

  9. Ginkel, A., Schöbel, A.: To wait or not to wait? The bicriteria delay management problem in public transportation. Transportation Science 41, 527–538 (2007)

    Article  Google Scholar 

  10. Müller-Hannemann, M., Schnee, M.: Efficient timetable information in the presence of delays. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 249–272. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Berger, A., Blaar, C., Gebhardt, A., Müller-Hannemann, M., Schnee, M.: Passenger flow-oriented train disposition. Technical Report 2011/2, Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg (2011)

    Google Scholar 

  12. Schnee, M.: Fully realistic multi-criteria timetable information systems. PhD thesis, Fachbereich Informatik, Technische Universität Darmstadt (2009)

    Google Scholar 

  13. Berger, A., Grimmer, M., Müller-Hannemann, M.: Fully dynamic speed-up techniques for multi-criteria shortest path searches in time-dependent networks. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 35–46. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, A., Blaar, C., Gebhardt, A., Müller-Hannemann, M., Schnee, M. (2011). Passenger Flow-Oriented Train Disposition. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics