Skip to main content

Maximum Flows by Incremental Breadth-First Search

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

Abstract

Maximum flow and minimum s-t cut algorithms are used to solve several fundamental problems in computer vision. These problems have special structure, and standard techniques perform worse than the special-purpose Boykov-Kolmogorov (BK) algorithm. We introduce the incremental breadth-first search (IBFS) method, which uses ideas from BK but augments on shortest paths. IBFS is theoretically justified (runs in polynomial time) and usually outperforms BK on vision problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, C., Banerjee, S., Kalra, P., Maheshwari, S.: An Efficient Graph Cut Algorithm for Computer Vision Problems. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 552–565. Springer, Heidelberg (2010)

    Google Scholar 

  2. Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  MATH  Google Scholar 

  3. Boykov, Y., Veksler, O.: Graph Cuts in Vision and Graphics: Theories and Applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 109–131. Springer, Heidelberg (2006)

    Google Scholar 

  4. Chandran, B., Hochbaum, D.: A Computational Study of the Pseudoflow and Push-Relabel Algorithms for the Maximum Flow Problem. Operations Research 57, 358–376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cherkassky, B.V.: A Fast Algorithm for Computing Maximum Flow in a Network. In: Karzanov, A.V. (ed.) Collected Papers. Combinatorial Methods for Flow Problems, vol. 3, pp. 90–96. The Institute for Systems Studies, Moscow (1979) (in Russian); English translation appears in AMS Trans. 158, 23–30 (1994)

    Google Scholar 

  6. Cherkassky, B.V., Goldberg, A.V.: On Implementing Push-Relabel Method for the Maximum Flow Problem. Algorithmica 19, 390–410 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dantzig, G.B.: Application of the Simplex Method to a Transportation Problem. In: Koopmans, T.C. (ed.) Activity Analysis and Production and Allocation, pp. 359–373. Wiley, New York (1951)

    Google Scholar 

  8. Dinic, E.A.: Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)

    Google Scholar 

  9. Ford Jr., L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal of Math. 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldberg, A.V.: Two-Level Push-Relabel Algorithm for the Maximum Flow Problem. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 212–225. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Goldberg, A.V., Rao, S.: Beyond the Flow Decomposition Barrier. J. Assoc. Comput. Mach. 45, 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg, A.V., Tarjan, R.E.: A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach. 35, 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldfarb, D., Grigoriadis, M.D.: A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow. Annals of Oper. Res. 13, 83–123 (1988)

    Article  MathSciNet  Google Scholar 

  14. Johnson, D.S., McGeoch, C.C.: Network Flows and Matching: First DIMACS Implementation Challenge. AMS, Providence (1993)

    Book  MATH  Google Scholar 

  15. Karzanov, A.V.: Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok. 15, 434–437 (1974)

    MATH  Google Scholar 

  16. King, V., Rao, S., Tarjan, R.: A Faster Deterministic Maximum Flow Algorithm. J. Algorithms 17, 447–474 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. J. Comput. System Sci. 26, 362–391 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, A.V., Hed, S., Kaplan, H., Tarjan, R.E., Werneck, R.F. (2011). Maximum Flows by Incremental Breadth-First Search. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics