Skip to main content

Biodegradation of Military Explosives RDX and HMX

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are important military explosives. They are toxic anthropogenic compounds and persist as environmental pollutants as a result of weapon manufacture, deployment, and decommissioning. Production, testing and use of these compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Therefore, economical and efficient methods for treatment of wastewater and clean-up of soils or groundwater containing RDX and HMX are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian NR, Arnett CM (2004) Anaerobic biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr Microbiol 48:332–340

    CAS  Google Scholar 

  • Adrian NR, Chow T (2001) Identification of hydroxylamino-dinitroso-1, 3, 5-triazine as a transient intermediate formed during the anaerobic biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. Environ Toxicol Chem 20:1874–1877

    CAS  Google Scholar 

  • Adrian NR, Lowder A (1999) Biodegradation of RDX and HMX by a methanogenic enrichment culture. In: Alleman BC, Leeson A (eds) Bioremediation of nitroaromatic and haloaromatic compounds, vol 7. Battelle Press, Columbus, pp 1–6

    Google Scholar 

  • Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Water Res 37:3499–3507

    CAS  Google Scholar 

  • Agrawal A, Tratnyek P (1996) Reduction of nitroaromatic compounds by zero-valent iron metal. Environ Sci Technol 30:153–160

    CAS  Google Scholar 

  • Ahmad F, Hughes JB (2002) Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2, 4, 6 trinitrotoluene (TNT) towards biomass and humic acids. Environ Sci Technol 36:4370–4381

    CAS  Google Scholar 

  • Akhavan J (1998) The chemistry of explosives. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • An CJ, He YL, Huang GH, Yang SC (2010) Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by anaerobic mesophilic granular sludge from a UASB reactor. J Chem Technol Biotechnol 85:831–838

    CAS  Google Scholar 

  • Bayman P, Ritchey SD, Bennett JW (1995) Fungal interactions with the explosive RDX (hexahydro-1, 3, 5-trinitro- 1, 3, 5-triazine). J Ind Microbiol 15:418–423

    CAS  Google Scholar 

  • Beller HR (2002) Anaerobic biotransformation of RDX (hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. Water Res 36:2533–2540

    CAS  Google Scholar 

  • Bhatt M, Zhao JS, Monteil-Rivera F, Hawari J (2005) Biodegradation of cyclic nitramines by tropical marine sediment bacteria. J Ind Microbiol Biotechnol 32:261–267

    CAS  Google Scholar 

  • Bhatt M, Zhao JS, Halasz A, Hawari J (2006) Biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment. J Ind Microbiol Biotechnol 33:850–858

    CAS  Google Scholar 

  • Bhushan B, Halasz A, Spain JC, Thiboutot S, Ampleman G, Hawari J (2002) Biotransformation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol 36:3104–3108

    CAS  Google Scholar 

  • Bhushan B, Paquet L, Halasz A, Spain JC, Hawari J (2003a) Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions. Biochem Biophys Res Commun 306:509–515

    CAS  Google Scholar 

  • Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003b) Biotransformation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl Environ Microbiol 69:1347–1351

    CAS  Google Scholar 

  • Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821

    CAS  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322

    CAS  Google Scholar 

  • Boopathy R (2001) Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Biores Technol 76:241–244

    CAS  Google Scholar 

  • Boopathy R, Manning J, Kulpa CF (1997) Anaerobic bioremediation of explosive contaminated soil: a laboratory study. In: Wise DL (ed) Global environmental biotechnology, vol 39. Kluwer Academic Publishers, Dordrecht, pp 463–474

    Google Scholar 

  • Boopathy R, Kulpa CF, Manning J (1998a) Anaerobic biodegradation of explosives and related compounds by sulfate-reducing and methanogenic bacteria: a review. Biores Technol 63:81–89

    CAS  Google Scholar 

  • Boopathy RB, Gurgas M, Ullian J, Manning JF (1998b) Metabolism of explosive compounds by sulfate-reducing bacteria. Curr Microbiol 37:127–131

    CAS  Google Scholar 

  • Bradley PM, Dinicola RS (2005) RDX (hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) biodegradation in aquifer sediments under manganese-reducing conditions. Biorem J 9:1–8

    CAS  Google Scholar 

  • Brill BT (1990) Structure-thermolysis relationships for energetic materials. In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer Academic Publishers, Dordrecht, pp 277–326

    Google Scholar 

  • Burdette LJ, Cook LL, Dyer RS (1988) Convulsant properties of cyclotrimethylenetrinitramine (RDX): spontaneous, audiogenic, and amygdaloid kindled seizure activity. Toxicol Appl Pharmacol 92:436–444

    CAS  Google Scholar 

  • Burton DT, Turley SD, Peters GT (1994) The toxicity of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) to the freshwater green alga Selenastrum capricornutum. Water Air Soil Pollut 76:449–457

    CAS  Google Scholar 

  • Carter MC, Weber WJ Jr, Olmstead KP (1992) Effects of background dissolved organic matter on TCE adsorption by GAC. J Am Water Works Assoc 84:1–91

    Google Scholar 

  • Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut 129:13–21

    CAS  Google Scholar 

  • Coleman NV, Duxbury T (1999) Biodegradation of RDX by Rhodococcus sp. strain DN22. 2nd international symposium biodegradation of nitroaromatic compounds and explosives, Leesburg, VA, 8–9 September, Abstract, p 13

    Google Scholar 

  • Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) as a nitrogen source by a Rhodococcus sp. strain DN22. Soil Biol Biochem 30:1159–1167

    Google Scholar 

  • Coleman NV, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome P-450. J Appl Microbiol 93:463–472

    CAS  Google Scholar 

  • Cooper PW (1996) Explosives engineering. Wiley, New York

    Google Scholar 

  • Croce M, Okamoto Y (1979) Cationic micellar catalysis of the aqueous alkaline hydrolyses of 1, 3, 5-triaza-1, 3, 5-trinitrocyclohexane and 1, 3, 5, 7-tetraaza-1, 3, 5, 7- tetranitrocyclooctane. J Organic Chem 44:2100–2103

    CAS  Google Scholar 

  • Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX and CL-20. Appl Microbiol Biotechnol 73:274–290

    CAS  Google Scholar 

  • Darrach MR, Chutjian A, Plett GA (1998) Trace explosives signatures from World War II unexploded undersea ordnance. Environ Sci Technol 32:1354–1358

    CAS  Google Scholar 

  • Doppalapudi RB, Sorial GA, Maloney SW (2002) Electrochemical reduction of simulated munitions wastewater in a bench-scale batch reactor. Environ Eng Sci 19:115–130

    CAS  Google Scholar 

  • Drzyzga O, Gorontzy T, Schmidt A, Blotevogel KH (1995) Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177. Arch Environ Contam Toxicol 28:229–235

    CAS  Google Scholar 

  • Ederer MM, Lewis TA, Crawford RL (1997) 2, 4, 6-trinitrotoluene (TNT) transformation by clostridia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18:82–88

    CAS  Google Scholar 

  • Fernando T, Aust SD (1991) Biodegradation of munition waste, TNT (2, 4, 6-trinitrotoluene) and RDX (hexahydro-1, 3, 5- trinitro-1, 3, 5-triazine) by Phanerochaete chrysosporium. In: Tedder DW, Pohland FG (eds) Emerging technologies in hazardous waste management. American Chemical Society, Washington, pp 214–232

    Google Scholar 

  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine with Rhodococcus sp. Strain DN22. Appl Environ Microbiol 68:166–172

    CAS  Google Scholar 

  • Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004a) Biodegradation of the hexahydro-1, 3, 5-trinitro-1, 3, 5- triazine ring cleavage product 4-nitro-2, 4-diazabutanal by Phanerochaete chrysosporium. Appl Environ Microbiol 70:1123–1128

    CAS  Google Scholar 

  • Fournier D, Halasz A, Thiboutot S, Ampleman G, Manno D, Hawari J (2004b) Biodegradation of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7 tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway. Environ Sci Technol 38:4130–4133

    CAS  Google Scholar 

  • Fournier D, Trott S, Hawari J, Spain J (2005) Metabolism of the aliphatic nitramine 4-nitro-2, 4-diazabutanal by Methylobacterium sp. strain JS178. Appl Environ Microbiol 71:4199–4202

    CAS  Google Scholar 

  • Freedman DL, Sutherland KW (1998) Biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) under nitrate-reducing conditions. Water Sci Technol 38:33–40

    CAS  Google Scholar 

  • Fuller ME, McClay K, Hawari J, Paquet L, Malone TE, Fox BG, Steffan RJ (2009) Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl Microbiol Biotechnol 84:535–544

    CAS  Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59:2171–2177

    CAS  Google Scholar 

  • Garg R, Grasso D, Hoag G (1991) Treatment of explosives contaminated lagoon sludge. Hazard Waste Hazard Mater 8:319–340

    CAS  Google Scholar 

  • Goldberg DJ, Green ST, Nathwani D, McMenamin J, Hamlet N, Kennedy DH (1992) RDX intoxication causing seizures and a widespread petechial rash mimicking meningococcemia. J Res Soc Med 85:181

    CAS  Google Scholar 

  • Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Leow E, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20:265–284

    CAS  Google Scholar 

  • Greer CW, Godbout J, Zilber B, Labelle S, Sunahara G, Hawari J, Ampleman G, Thiboutot S, Dubois C (1997) Bioremediation of RDX/HMX-contaminated soil: from flask to field. In: Hinchee R, Hoeppel RE, Anderson DB (eds) In situ and ex situ bioremediation. Battelle Press, Columbus, pp 393–398

    Google Scholar 

  • Griest WH, Tyndall RL, Stewart AJ, Caton JE, Vass AA, Ho CH, Caldwell WM (1995) Chemical characterization and toxicological testing of windrow composts from explosives-contaminated sediments. Environ Toxicol Chem 14:51–59

    CAS  Google Scholar 

  • Guiot SR, Shen CF, Paquet L, Breton J, Hawari J (1999) Pilot-scale anaerobic bioslurry remediation of RDX and HMX contaminated soils. In: Alleman B, Leeson A (eds) Bioremediation of nitroaromatic and haloaromatic compounds. Battelle Press, Columbus, p 15

    Google Scholar 

  • Haas R, Schreiber I, von Low E, Stork G (1990) Conception for the investigation of contaminated munitions plants. 2. Investigation of former RDX-plants and filling stations. Fresenius J Anal Chem 338:41–45

    CAS  Google Scholar 

  • Halasz A, Spain J, Paquet L, Beaulieu C, Hawari J (2002) Insights into the formation and degradation mechanisms of methylenedinitramine during the incubation of RDX with anaerobic sludge. Environ Sci Technol 36:633–638

    CAS  Google Scholar 

  • Halasz A, Manno D, Strand SE, Bruce NC, Hawari J (2010) Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: New insights into the degradation pathway. Environ Sci Technol 44:9330–9336

    Google Scholar 

  • Hansen LD, Davis JL, Escalon L (2001) Reductive transformation of RDX in a bench-scale simulated aquifer. In: Magar VS, Johnson G, Ong SK, Leeson A (eds) The 6th International in situ and on site bioremediation conference, Battelle Press, San Diego, California, pp 51–58

    Google Scholar 

  • Harkins VAR (1998) Aerobic biodegradation of HMX (Octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine) with supplemental study of RDX (Hexahydro-1,3,5-trinitro-1,3,5- triazine). Dissertation, Texas Technical University, Lubbock

    Google Scholar 

  • Harkins VR, Mollhagen T, Heintz C, Rainwater K (1999) Aerobic biodegradation of high explosives, phase 1-HMX. Bioremed J 3:285–290

    CAS  Google Scholar 

  • Hawari J (2000) Biodegradation of RDX and HMX: from basic research to field application. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, pp 277–310

    Google Scholar 

  • Hawari J, Halasz A, Paquet L, Zhou E, Spencer B, Ampleman G, Thiboutot S (1998) Characterization of metabolites in the biotransformation of 2, 4, 6-trinitrotoluene with anaerobic sludge: role of triaminotoluene. Appl Environ Microbiol 64:2200–2206

    CAS  Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2, 4, 6-trinitrotoluene (TNT) with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986

    CAS  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    CAS  Google Scholar 

  • Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000b) Characterization of metabolites during biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657

    CAS  Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75

    CAS  Google Scholar 

  • Heaston MS, Barnes PW, Alvestad KR (2001) Reductive biotransformation of nitrate and explosives compounds in groundwater. In: Magar VS, Johnson G, Ong SK, Leeson A (eds) The 6th International in situ and on site bioremediation conference, Battelle Press, San Diego, California, pp 17–24

    Google Scholar 

  • Hoffsommer JC, Kubose DA, Glover DJ (1977) Kinetic isotope effects and intermediate formation for the aqueous alkaline hydrolysis of 1, 3, 5-triaza-1, 3, 5-trinitrocyclohexane (RDX). J Phys Chem 81:380–385

    CAS  Google Scholar 

  • Huang CY (1998) The anaerobic biodegradation of the high explosive octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by an extremely thermophilic anaerobe Caldicellulosiruptor owensensis sp., Dissertation, University of California, Los Angeles

    Google Scholar 

  • Isbister JD, Anspach GL, Kitchens JF, Doyle RC (1984) Composting for decontamination of soils containing explosives. Microbiolgica 7:47–73

    CAS  Google Scholar 

  • Jones AM, Greer CW, Ampleman G, Thiboutot S, Lavigne J, Hawari J (1995a) Biodegradability of selected highly energetic pollutants under aerobic conditions. In: Hinchee RE, Anderson DB, Hoeppel RE (eds) Bioremediation of recalcitrant organics. 3rd International in situ bioremediation symposium. Battelle Press, Columbus, Ohio, pp 251–257

    Google Scholar 

  • Jones AM, Labelle S, Paquet L, Hawari J, Rho D, Samson R, Greer CW, Lavigne J, Thiboutot S, Ampleman G, Lavertu R (1995b) Assessment of the aerobic biodegradation potential of RDX, TNT, GAP and NC. In: Moo-Young M, Anderson WA, Chakrabarty AM (eds) Environmental biotechnology: principles and applications. Kluwer Academic Publisher, Dordrecht, pp 368–381

    Google Scholar 

  • Kaplan DL (1990) Biotransformation pathways of hazardous energetic organo-nitro compounds. In: Kamely D, Chakrabarty A, Omenn GS (eds) Biotechnology and biodegradation. Advances in applied biotechnology series, vol 4. Portfolio Publishing, Woodlands, pp 155–181

    Google Scholar 

  • Kaplan AS, Berghout CF, Peczenik A (1965) Human intoxication from RDX. Arch Environ Health 10:877–883

    CAS  Google Scholar 

  • Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine degrading species of the family enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60:4608–4611

    CAS  Google Scholar 

  • Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000) Type I nitroreductases in soil enterobacteria reduce TNT (2, 4, 6,-trinitrotoluene) and RDX (hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine). Can J Microbiol 46:278–282

    CAS  Google Scholar 

  • Kwon MJ, Finneran KT (2006) Microbially mediated biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine by extracellular electron shuttling compounds. Appl Environ Microbiol 72:5933–5941

    CAS  Google Scholar 

  • Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 444:25–39

    CAS  Google Scholar 

  • Lamberton AH, Lindley C, Owston PG, Speakman JC (1949a) Studies of nitroamines. Part V. Some properties of hydroxymethyl- and aminomethyl-nitroamines. J Chem Soc 355:1641–1646

    Google Scholar 

  • Lamberton AH, Lindley C, Speakman JC (1949b) Studies of nitroamines. Part VII. The decomposition of methylenedinitroamine in aqueous solutions. J Chem Soc 357:1650–1656

    Google Scholar 

  • Lee SY, Brodman BW (2005) Biodegradation of 1, 3, 5-Trinitro-1, 3, 5-triazine (RDX). J Environ Sci Health 39:61–75

    Google Scholar 

  • Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuss HJ (1998) Biological treatment of TNT contaminated soil. 2. Biologically induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32:1964–1971

    CAS  Google Scholar 

  • Levine BS, Furedi EM, Gordon DE, Burns JM, Lish PM (1981) Thirteen week toxicity study of hexahydro-1, 3, 5-trinitro-1, 3, 5- triazine (RDX) in Fischer 344 rats. Toxicol Lett 8:241–245

    CAS  Google Scholar 

  • Levsen K, Mussmann P, Berger-Priess E, Priess A, Volmer D, Wunsch G (1993) Analysis of nitroaromatics and nitramines in ammunition waste water and in aqueous samples from former ammunition plants and other military sites. Acta Hydrochimica Hydrobiologica 21:153–166

    CAS  Google Scholar 

  • Luo KM, Lin SH, Chang JG, Huang TH (2002) Evaluations of kinetic parameters and critical runaway conditions in the reaction system of hexamine-nitric acid to produce RDX in a non-isothermal batch reactor. J Loss Prev Process Indust 15(2):119–127

    Google Scholar 

  • McCalla DR, Reuvers A, Kaiser C (1970) Mode of action of nitrofurazone. J Bacteriol 104:1126–1134

    CAS  Google Scholar 

  • McCormick NJ, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-l, 3, 5-trinitro-1, 3, 5-triazine. Appl Environ Microbiol 42:817–823

    CAS  Google Scholar 

  • McLellan WL, Hartley WR, Brower ME (1992) Octahydro-l, 3, 5, 7-tetranitro-l, 3, 5, 7- tetrazocine (HMX). In: Hartley WR, Roberts WC (eds) Drinking water health advisory: munitions. CRC Press, Lewis Publishers, Boca Raton, pp 247–273

    Google Scholar 

  • Monteil-Rivera F, Groom C, Hawari J (2003) Sorption and degradation of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine in soil. Environ Sci Technol 37:3878–3884

    CAS  Google Scholar 

  • Morley MC, Shammas SN, Speitel GE Jr (2002) Biodegradation of RDX and HMX mixtures: batch screening experiments and sequencing batch reactors. Environ Eng Sci 19:237–250

    CAS  Google Scholar 

  • Morley MC, Henke JL, Speitel GE Jr (2005) Adsorption of RDX and HMX in rapid small-scale column tests: Implications for full-scale adsorber applications. J Environ Eng 131:29–37

    CAS  Google Scholar 

  • Myler CA, Sysk W (1991) Bioremediation of explosives contaminated soils. In: Sayler GS (ed) Environmental biotechnology for waste treatment. Plenum Press, New York, pp 137–196

    Google Scholar 

  • Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J (2008) Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) using zerovalent iron nanoparticles. Environ Sci Technol 42:4364–4370

    CAS  Google Scholar 

  • Oh BT, Just L, Alvarez PJJ (2001) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine mineralization by zero valent iron and mixed anaerobic cultures. Environ Sci Technol 35:4341–4346

    CAS  Google Scholar 

  • Pennington JC, Jenkins TF, Thiboutot S, Ampleman G, Clausen J, Hewitt AD, Lewis J, Walsh MR, Walsh ME, Ranney TA, Silverblatt B, Marois A, Gagnon A, Brousseau P, Zufelt JE, Poe K, Bouchard M, Martel R, Walker DD, Ramsey CA, Hayes CA, Yost SL, Bjella KL, Trepanier L, Berry TE Jr, Lambert DJ, Dubé P, Perron NM (2005) Distribution and fate of energetics on DoD test and training ranges: interim report 5. U.S. Army Engineer Research and Development Center, Vicksburg, MS, Technical Report ERDC TR-05-2

    Google Scholar 

  • Peters GT, Burton DT, Paulson RL, Turley SD (1991) The acute and chronic toxicity of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) to three freshwater invertebrates. Environ Toxicol Chem 10:1073–1081

    CAS  Google Scholar 

  • Peterson FG, Mason RP, Hovesepian J, Holtzman JL (1979) Oxygen-sensitive and-insensitive nitroreduction by Escherichia coli and rat hepatic microcosms. J Biol Chem 254:4009–4014

    CAS  Google Scholar 

  • Price CB, Brannon JM, Yost SL, Hayes CA (2001) Relationship between redox potential and pH on RDX transformation in soil water slurries. J Environ Eng 127:26–31

    CAS  Google Scholar 

  • Regan KM, Crawford RL (1994) Characterization of Clostridium biofermentans and its biotransformation of 2, 4, 6-trinitrotoluene (TNT) and 1, 3, 5-triaza-1, 3, 5-trinitrocyclohexane (RDX). Biotechnol Lett 16:1081–1086

    CAS  Google Scholar 

  • Robidoux PY, Svendsen C, Caumartin J, Hawari J, Ampleman G, Thiboutot S, Weeks JM, Sunahara GI (2000) Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Toxicol Chem 19:1764–1773

    CAS  Google Scholar 

  • Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2, 4, 6-trinitrotoluene (TNT) and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44:198–209

    CAS  Google Scholar 

  • Roh H, Yu CP, Fuller ME, Chu KH (2009) Identification of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine degrading microorganisms via 15N-stable isotope probing. Environ Sci Technol 43:2505–2511

    CAS  Google Scholar 

  • Ronen Z, Yanovich Y, Goldin R, Adar E (2008) Metabolism of the explosive hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) in a contaminated vadose zone. Chemosphere 73:1492–1498

    CAS  Google Scholar 

  • Rosenblatt DH (1980) Toxicology of explosives and propellants. In: Kaye SM (ed) Encyclopedia of explosives and related items. US Army Armament Research Development Committee, Dover, pp 332–345

    Google Scholar 

  • Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In: Hutzinger O (ed) The handbook of environmental chemistry Vol. 3 Part G. Springer, Berlin, pp 196–225

    Google Scholar 

  • Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    CAS  Google Scholar 

  • Seth-Smith HMB, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive degrading cytochrome P450 systems is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74:4550–4552

    CAS  Google Scholar 

  • Sewell TD, Thompson DL (1991) Classical dynamics study of unimolecular dissociation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. J Phys Chem 95:6228–6242

    CAS  Google Scholar 

  • Shen CF, Guiot SR, Thiboutot S, Ampleman G, Hawari J (1998) Complete degradation of RDX and HMX in anoxic soil slurry bioreactors: laboratory and pilot-scale experiments, Proceedings of 6th International FZK/TNO conference on contaminated soil, Edinburgh, UK, pp 513–522

    Google Scholar 

  • Shen CF, Hawari J, Ampleman G, Thiboutot S, Guiot SR (2000) Enhanced biodegradation and fate of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) in anaerobic soil slurry bioprocess. Biorem J 4:27–39

    CAS  Google Scholar 

  • Sherburne LA, Shrout JD, Alvarez PJJ (2005) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation 16:539–547

    CAS  Google Scholar 

  • Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34:3384–3388

    CAS  Google Scholar 

  • Sheremata TW, Halasz A, Ampleman G, Thiboutot S, Hawari J (1999) Fate of 2, 4, 6-trinitrotoluene and its metabolites in natural and model soil systems. Environ Sci Technol 33:4002–4008

    CAS  Google Scholar 

  • Singh J, Comfort SD, Shea PJ (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J Environ Qual 27:1240–1245

    CAS  Google Scholar 

  • Singh R, Soni P, Kumar P, Purohit S, Singh A (2009) Biodegradation of high explosive production effluent containing RDX and HMX by denitrifying bacteria. World J Microbiol Biotechnol 25:269–275

    CAS  Google Scholar 

  • Spain JC, Hughes JB, Knachmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, New York

    Google Scholar 

  • Stahl JD, Aust SD (1995) Biodegradation of 2, 4, 6-trinitrotoluene by the white rot fungus Phanerochaete chrysosporium. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 117–134

    Google Scholar 

  • Stahl JD, Van Aken B, Cameron MD, Aust SD (2001) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) biodegradation in liquid and solid-state matrices by Phanerochaete chrysosporium. Biorem J 5:13–25

    Google Scholar 

  • Talmage SS, Opresko DM, Maxwell CJ, Welsh CJ, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munition compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    CAS  Google Scholar 

  • Tekoah Y, Abeliovich NA (1999) Participation of cytochrome P450 in the biodegradation of RDX by a Rhodococcus strain. 2nd international symposium on biodegradation of nitroaromatic compounds and explosives, Leesburg, VA, 8–9 September, Abstract, p 7

    Google Scholar 

  • Testud F, Glanclaude JM, Descotes J (1996) Acute hexogen poisoning after occupational exposure. J Toxicol Clin Toxicol 34:109–111

    CAS  Google Scholar 

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    CAS  Google Scholar 

  • USEPA (2004) US environmental protection agency, drinking water standards and health advisories. Publication EPA 822-R-04–005, Office of Water, USEPA, Washington

    Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517

    Google Scholar 

  • Vanderloop SL, Suidan MT, Berchtold SR, Moteleb MA, Maloney SW (1997) Effects of molecular oxygen on GAC adsorption of energetics. Water Sci Technol 35:197–204

    CAS  Google Scholar 

  • Wight CA, Botcher TR (1992) Thermal decomposition of solid RDX begins with N–N bond scission. J Am Chem Soc 114:8303–8304

    CAS  Google Scholar 

  • Wingfors H, Edlund C, Hagglund L, Waleij A, Sjöstrom J, Karlsson RM, Leffler P, Qvarfort U, Ahlberg M, Thiboutot S, Ampleman G, Martel R, Duvalois W, Creemers A, van Ham N (2006) Evaluation of the contamination by explosives and metals in soils at the Alvdalen shooting range. Part II: Results and discussion. FOI-Swedish Defence Research Agency, NBC Defence, SE-901 82 UmeÃ¥, Report FO1-R-1877-SE

    Google Scholar 

  • Woody RC, Kearns GL, Brewster MA, Turley CP, Sharp GB, Lake RS (1986) The neurotoxicity of cyclotrimethylenetrinitramine (RDX) in a child: a clinical and pharmacokinetic evaluation. J Toxicol Clin Toxicol 24:305–319

    CAS  Google Scholar 

  • Yang YX, Wang P, Yin P, Li W, Zhou P (1983) Studies on three strains of Corynebacterium degrading cyclotrimethylenetrinitro. Acta Microbiol Sin 23:251–256

    CAS  Google Scholar 

  • Yinon J (1990) Toxicity and metabolism of explosives. CRC Press, Boca Raton

    Google Scholar 

  • Young DM, Unkefer PJ, Ogden KL (1997) Biotransformation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens. Biotechnol Bioeng 53(5):515–522

    CAS  Google Scholar 

  • Young TSM, Morley MC, Snow DD (2006) Anaerobic biodegradation of RDX and TCE: single- and dual-contaminant batch tests. Pract Periodical Hazard, Toxic, Radioactive Waste Manage 10(2):94–101

    CAS  Google Scholar 

  • Zhang C, Hughes JB (2003) Biodegradation pathways of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere 50:665–671

    CAS  Google Scholar 

  • Zhao X, Hintsa EJ, Lee YT (1988) Infrared multiphoton dissociation of RDX in a molecular beam. J Chem Phys 88:801–810

    CAS  Google Scholar 

  • Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine and its mononitroso derivative hexahydro-1-nitroso-3, 5-dinitro-1, 3, 5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68:5336–5341

    CAS  Google Scholar 

  • Zhao JS, Paquet L, Halasz A, Hawari J (2003) Metabolism of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine through initial reduction to hexahydro-1-nitroso-3, 5-dinitro-1, 3, 5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol 63:187–193

    CAS  Google Scholar 

  • Zhao JS, Greer CW, Thiboutot S, Ampleman G, Hawari J (2004a) Biodegradation of the nitramine explosives hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50:91–96

    Google Scholar 

  • Zhao JS, Spain J, Thiboutot S, Ampleman G, Greer C, Hawari J (2004b) Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 49:349–357

    CAS  Google Scholar 

  • Zhao JS, Manno D, Leggiadro C, O’Neil D, Hawari J (2006) Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Intl J Syst Evol Microbiol 56:205–212

    CAS  Google Scholar 

  • Zhao JS, Manno D, Hawari J (2008) Regulation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Microbiology 154:1026–1037

    CAS  Google Scholar 

Download references

Acknowledgments

Authors express sincere gratitude to Dr. Narendra Kumar, Director, Defence Laboratory, Jodhpur for the support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, R., Singh, A. (2012). Biodegradation of Military Explosives RDX and HMX. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_9

Download citation

Publish with us

Policies and ethics