Skip to main content

Part of the book series: Use R! ((USE R))

Abstract

The number of comparisons of gene expression level studied in a microarray experiment has been growing literarily at an exponential rate since the beginning of the 1990s. Considering a microarray data analyzed by testing each gene, multiple testing is an immediate concern. When many hypotheses are tested, the probability that a type I error is committed increases sharply with the number of hypotheses. This problem of multiplicity is not unique to microarray technology, yet its magnitude here, where a single experiment may involve many thousands of genes, dramatically intensifies the problem.In this chapter, we discuss a few procedures controlling for the FWER, such as the Bonferroni, Holm, and the maxT procedures. However, the focus of this chapter is controlling the FDR criterion, since it admits a more powerful outcome. We discuss several variations of the Benjamini and Hochberg step-up procedure (BH-FDR 1995), the permutation-based FDR controlling procedures, and the significance analysis of microarrays (SAM) approach of Tusher et al. (Proc Natl Acad Sci 98:5116–5121, 2001) and the Efron et al. (J Am Stat Assoc 96:1151–1160, 2001), and Storey (A direct approach to false discovery rates. Technical Report. Stanford University, Stanford, 2001) Bayesian interpretation of the FDR within the context of microarray data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affymetrix GeneChip. (2004). Expression analysis technical manual, Rev.4. Santa Clara: Affymetrix.

    Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of Royal Statistical Soceity B, 57, 289–300.

    Google Scholar 

  • Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-up false discovery rate controlling procedures. Biometrika, 93(3), 491–507.

    Google Scholar 

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annal of Statistics, 29(4), 1165–1188.

    Google Scholar 

  • Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 98, 77–87.

    Google Scholar 

  • Efron, B., Tibshirani, R., Storey, J. D., & Tusher, V. (2001). Empirical Bayes analysis of a microarray experiment. Journal of the American Statistical Association, 96, 1151–1160.

    Google Scholar 

  • Ge, Y., Dudoit, S., & Speed, P. T. (2003). Resampling based multiple testing for microarray data analysis (Technical report, 633). Berkeley: University of Berkeley.

    Google Scholar 

  • Hochberg, Y., & Tamhane, Y. C. (1987). Multiple comparison procedures. New York: Wiley.

    Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  • Hommel, G., & Hoffman, T. (1998). Controlled uncertainty. In P. Bauer, G. Hommel, & E. Sonnemann (Eds.), Multiple hypotheses testing (pp. 154–161). Heidelberg: Springer.

    Google Scholar 

  • Lehmann, E.L., & Romano, J. P. (2005). Generalizations of the familywise error rate. Ann. Statist., 33(3), 1138–1154.

    Google Scholar 

  • Reiner, A., Yekutieli, D., & Benjamini, Y. (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics, 19(3), 368–375.

    Google Scholar 

  • Sarkar, S. K. (2007). Procedures controlling generalized FWER and generalized FDR. The Annals of Statistics, 35(6), 2405–2420.

    Google Scholar 

  • Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1), Article 3.

    Google Scholar 

  • Storey, J. D. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society B, 64(Pt 3), 479–498.

    Google Scholar 

  • Storey, J. D. (2003) The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics, 31(6), 2013–2035.

    Google Scholar 

  • Szechtman, H., Sulis, W., & Eilam, D. (1998). Quinpirole induces compulsive checking behavior in rats: A potential animal model of obsessive-compulsive disorder (OCD). Behavioral Neuroscience, 112, 1475–1485.

    Google Scholar 

  • Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrys applied to the ionizing radiation response, Proceedings of the National Academy of Sciences, 98, 5116–5121.

    Google Scholar 

  • Westfall, P. H., & Young, S. S. (1993). Resampling based multiple testing. New York: John Wiley & Sons.

    Google Scholar 

  • Xu, H., & Hsu, J. C. (2007). Using the partitioning principle to control the generalized family error rate. Biometrical Journal, 49, 52–67.

    Google Scholar 

  • Yekutieli, D., & Benjamini, Y. (1999). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference, 82, 171–196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Yekutieli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yekutieli, D., Lin, D., Shkedy, Z., Amaratunga, D. (2012). Adjustment for Multiplicity. In: Lin, D., Shkedy, Z., Yekutieli, D., Amaratunga, D., Bijnens, L. (eds) Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R. Use R!. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24007-2_6

Download citation

Publish with us

Policies and ethics