Skip to main content

High-Performance Computing Techniques for Coupled Fluid, Structure and Acoustics Simulations

  • Conference paper
  • First Online:
Competence in High Performance Computing 2010

Abstract

A framework for fully coupled numerical simulation of fluid flow, structural deformation, and acoustics is presented. The methodology involves an implicit partitioned approach for fluid-structure interaction, a viscous-acoustic splitting technique for flow acoustics, and corresponding coupling schemes. All components are designed for the use on parallel high-performance computers. Special emphasis is given to the use of geometric multi-grid techniques in order to increase the efficiency of the numerical simulations. Results for several test cases illustrate the capabilities of the approaches considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM (2000)

    Google Scholar 

  2. Demirdzic, I., Peric, M.: Space conservation law in finite volume calculations of fluid flow. Int. J. Numer. Meth. Fluid. 8(9), 1037–1050 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ertem-Müller, S.: Numerical efficiency of implicit and explicit methods with multigrid for Large Eddy Simulation in complex geometries. PhD thesis, TU Darmstadt (2003)

    Google Scholar 

  4. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765, July (1991) LES 1.18

    Google Scholar 

  5. Heck, M.: Mehrgitterverfahren zur effizienten numerischen Simulation von Fluid-Struktur-Wechselwirkungen. PhD thesis, TU Darmstadt (2008)

    Google Scholar 

  6. Heck, M., Sternel, D.C., Schäfer, M., Yigit, S.: Influence of numerical and physical parameters on an implicit partitioned fluid-structure solver. In Proceedings of European Conference on CFD ECCOMAS (2006)

    Google Scholar 

  7. Institute of Numerical Methods in Mechanical Engineering, TU Darmstadt. FASTEST-Manual, 1 edition (2005)

    Google Scholar 

  8. Kornhaas, M.: Effiziente numerische Methoden zur Simulation aeroakustischer Probleme mit kleinen Machzahlen. PhD thesis, TU Darmstadt (2011)

    Google Scholar 

  9. Kornhaas, M., Sternel, D.C., Schäfer, M.: Efficiency investigation of a parallel hierarchical grid based aeroacoustic code for low mach numbers and complex geometries. In: Proceedings of V ECCOMAS CFD (2010)

    Google Scholar 

  10. Kornhaas, M., Winkler, M., Sternel, D.C., Becker, K., Schäfer, M., Kameier, F.: Les of cylinder plate configurations and corresponding aeroacoustic effects. In: Proceedings of 19ième Congrès Français de Mècanique (2009)

    Google Scholar 

  11. Leer, B.V.: Towards the ultimate conservative difference scheme iii. upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys. 23, 263–275 (1977)

    Google Scholar 

  12. Lehnhäuser, T., Schäfer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Meth. Fluid. 38, 625–645 (2002)

    Article  MATH  Google Scholar 

  13. MpCCI. Mesh based parallel code coupling interface, user’s guide V2.0. Fraunhofer Institut für Algorithmen und wissenschaftliches Rechnen, SCAI, Bonn (2004)

    Google Scholar 

  14. Schäfer, M., Sternel, D.C., Becker, G., Pironkov, P.: Efficient numerical simulation and optimization of fluid-structure interaction. In: Fluid Structure Interaction II: Modelling, Simulation, Optimization, vol. 73, pp. 131–158. Springer (2010)

    Google Scholar 

  15. Shen, W.Z., Sørensen, J.N.: Aeroacoustic modelling of low-speed flows. Theor. Comput. Fluid Dynam. 13, 271–289 (1999)

    Article  MATH  Google Scholar 

  16. Shen, W.Z., Sørensen, J.N.: Comment on the aeroacoustic formulation of hardin and pope. AIAA J. 37(1), 141–143 (1999)

    Article  Google Scholar 

  17. Sternel, D.C., Schäfer, M., Heck, M., Yigit, S.: Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach. Comput. Mech. 43(1), 103–113 12 (2008)

    Google Scholar 

  18. Taylor, R.L.: FEAP - A Finite Element Analysis Program - Version 7.5 User Manual. University of California (2003)

    Google Scholar 

  19. Wood, W.L.: Practical Time-stepping Schemes. Clarendon Press, Oxford (1990)

    MATH  Google Scholar 

  20. Yigit, S., Schäfer, M., Heck, M.: Grid movement techniques and their influence on laminar fluid structure interaction computations. J. Fluid Struct. 24(6), 819–832 (2008)

    Article  Google Scholar 

  21. Yigit, S., Sternel, D., Schäfer, M.: Efficiency of fluid-structure interaction simulations with adaptive underrelaxation and multigrid acceleration. Int. J. Multiphysics 1, 85–99 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

This research hasn’t been possible without the support of DFG (DFG Forschergruppe 493 and Sonderforschungsbereich SFB 568).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dörte C. Sternel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sternel, D.C., Kornhaas, M., Schäfer, M. (2011). High-Performance Computing Techniques for Coupled Fluid, Structure and Acoustics Simulations. In: Bischof, C., Hegering, HG., Nagel, W., Wittum, G. (eds) Competence in High Performance Computing 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24025-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24025-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24024-9

  • Online ISBN: 978-3-642-24025-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics