Skip to main content

Conclusions and Prospectives

  • Chapter
  • First Online:
Quantum Entanglement in Electron Optics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 67))

  • 1441 Accesses

Abstract

An essential ingredient to both the theoretical studies in, and technological applications of, quantum information science is easy availability of entangled states of two or more qubits. Hitherto, these qubits have primarily been photons and/or atoms. Photons are excellent carriers of information—nothing can travel faster than an electromagnetic wave. Also, it is relatively easy to generate states of two or more photonic qubits entangled with respect to either their (linear or circular) polarization, or amplitude and phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this monograph, these states for atoms, for example, have been specified by (\(L_{0},S_{0},M_{L_{0}},M_{S_{0}}\)) in L-S coupling, or by (\(J_{0},M_{J_{0}}\)) in j-j coupling. It is for this reason that, in the mathematical expressions used herein, the atomic \(densitymatrix\vert 0\rangle \langle 0\vert \) has been averaged over (\(M_{L_{0}},M_{S_{0}}\)), or \(M_{J_{0}}\), as the case may be (See Chap. 3 for a detailed discussion of this point.)

  2. 2.

    See, for example, discussion given on pages 48–49.

  3. 3.

    it is the dependence of the light–matter interaction on the polarization of the former and ∕ or anisotropy of the later. The differences observed due to a change in the helicity (direction of the electric field vector) of a circularly (linearly) polarized light—but, without any change in the nature of the anisotropy of the matter which in the case of a state-selected atom means, for example, that the direction of quantization of J ​0 should remain unaltered—have come to be known as circular [196, 340] (linear [341]) “optical” dichroism. The “magnetic” dichroism, on the other hand, arises (see, for example, [342344]) due to a change in the anisotropy of the matter while polarization of the interacting light remains the same. The magnetic dichroism is called [334] circular or linear depending upon whether the light interacting with the matter has circular or linear polarization.

  4. 4.

    It consists of magnitudes of the transition amplitudes and differences (with signs) of their phases.

References

  1. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Benjamin Cummings, New York, 2003)

    Google Scholar 

  2. O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  4. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H.S. Ribeiro, L. Davidovich, Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  5. O.J. Farías, C.L. Latune, S.P. Walborn, L. Davidovich, P.H.S. Ribeiro, Science 324, 1414 (2009)

    Article  ADS  Google Scholar 

  6. S. Parida, N. Chandra, R. Ghosh, Eup. Phys. J. D 65, 303 (2011)

    Article  ADS  Google Scholar 

  7. S. Parida, N. Chandra, Phys. Lett. A 373, 1852 (2009); Phys. Rev. A 79, 062501 (2009)

    Article  ADS  Google Scholar 

  8. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Vol. I & II (John Wiley, New York, 1978)

    MATH  Google Scholar 

  9. M. Weissbluth, Atoms and Molecules (Academic, New York, 1978)

    Google Scholar 

  10. U. Fano, Revs. Mod. Phys. 29, 74 (1957)

    Article  ADS  Google Scholar 

  11. R.N. Zare, Angular Momentum (Wiley-Interscience, 1988)

    Google Scholar 

  12. M. Mizushima, Theory of Rotating Diatomic Molecules (Wiley, 1975)

    Google Scholar 

  13. M. Tinkham, Group Theory and Quantum Mechanics (Dover, 2003)

    Google Scholar 

  14. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957)

    Book  Google Scholar 

  15. J. Xie, R.N. Zare, J. Chem. Phys. 93, 3033 (1990)

    Article  ADS  Google Scholar 

  16. F. Mintert, A.R.R. Carvalho, M. Kus, A. Buchleitner, Phys. Rep. 415, 207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. V.L. Jacobs, J. Phys. B 5, 2257 (1972)

    Article  ADS  Google Scholar 

  18. B. Lohmann, Angle and Spin Resolved Auger Emission: Theory and Applications to Atoms and Molelcues (Springer Series on Atomic, Optical, and Plasma Physics, Springer-Verlag, Berlin, Vol. 46, 2009)

    Google Scholar 

  19. E.U. Condon, R. Shortley, The Theory of Atomic Spectra, (Cambridge at the University Press, England, 1970)

    MATH  Google Scholar 

  20. J.M. Brown, A.C. Carrington, Rotational Spectroscopy of Diatomic Mollecules (Cambridge University Press, Cambridge, UK, 2003)

    Book  Google Scholar 

  21. I.I. Sobelman, Atomic Spectra and Radiative Transitions, 2nd ed. (Springer, Germany, 1992)

    Book  Google Scholar 

  22. N. Chandra, Phys. Rev. A 39, R2256 (1989)

    Article  ADS  Google Scholar 

  23. N.A. Cherepkoc, V.V. Kuznetsov, V.A. Verbitskii, J. Phys. B 28, 1221 (1995)

    Article  ADS  Google Scholar 

  24. A.N. Grum-Grzhimailo, M. Meyer, Eur. Phys. J. Spec. Top., 169, 43 (2009)

    Article  Google Scholar 

  25. H. Klar, H. Kleinpoppen, J. Phys. B 15, 933 (1982)

    Article  ADS  Google Scholar 

  26. A.N. Grum-Grzhimailo, D. Cubaynes, E. Heinecke, P. Hoffmann, P. Zimmermann, M. Meyer, J. Phys. B 43, 201002 (2010)

    Article  ADS  Google Scholar 

  27. M. Meyer, D. Cubaynes, F.J. Wuilleumier, E. Heinecke, T. Richter, P. Zimmermann, S.I. Strakhova, A.N. Grum-Grzhimailo, J. Phys. B 39, L153 (2006)

    Article  ADS  Google Scholar 

  28. B. Ritchie, Phys. Rev. A 12, 567 (1975)

    Article  ADS  Google Scholar 

  29. N.A. Cherepkoc, G. Schonhense, Eurphys. Lett. 24, 79 (1993)

    Article  ADS  Google Scholar 

  30. L. Baungarten, C.M. Schneider, H. Petersen, F. Schäfers, J. Kirschner, Phys. Rev. Lett. 65, 492 (1990)

    Article  ADS  Google Scholar 

  31. Ch. Roth, H.B. Rose, F.U. Hillebrecht, E. Kisker, Solid State Commun. 86, 647 (1993)

    Article  ADS  Google Scholar 

  32. D.M. Greenberger, M. Horne, A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Springer, Germany, 2010), p. 69

    Google Scholar 

  33. D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Am. J. Phys. 58, 1131 (1990)

    Article  ADS  Google Scholar 

  34. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  35. J.H. Eberly, T. Yu, Science 316, 555 (2007)

    Article  Google Scholar 

  36. T. Yu, J.H. Eberly, Optics Commun. 264, 393 (2006)

    Article  ADS  Google Scholar 

  37. T. Yu, J.H. Eberly, Optics Commun. 283, 676 (2010)

    Article  ADS  Google Scholar 

  38. J.-S. Xu, C.-F. Li, M. Gong, X.-B. Zou, C.-H. Shi, G. Chen, G.-C. Guo, Phys. Rev. Lett. 104, 100502 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandra .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, N., Ghosh, R. (2013). Conclusions and Prospectives. In: Quantum Entanglement in Electron Optics. Springer Series on Atomic, Optical, and Plasma Physics, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24070-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24070-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24069-0

  • Online ISBN: 978-3-642-24070-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics