Skip to main content

The Recognition of Consonance Is not Impaired by Intonation Deviations: A Revised Theory

  • Conference paper
  • First Online:
Challenges at the Interface of Data Analysis, Computer Science, and Optimization
  • 2476 Accesses

Abstract

The recognition of musical intervals is investigated comparing neurobiological and theoretical models (Tramo et al., The Biological Foundations of Music, Annals of the New York Academy of Sciences, 930, pp. 92–116, 2001; Ebeling, Verschmelzung und neuronale Autokorrelation als Grundlage einer Konsonanztheorie, Lang, Peter, Frankfurt/Main, 2007). The actual analyses focus on pitch tolerances of consonance identification. The mechanisms are different in models and the neurobiological process (pulse width and time latency) that the listener tolerates the deviation of the exact ratio of frequencies in the recognition of consonance. The neurobiological process is characterized by the spontaneous neural activity which is described by a Poisson distribution. Event related activities may be displayed in interspike-interval (ISI) and peri-event-time-histograms (PETH). Consonant musical intervals are characterized by periodicity in all-order ISI-histograms. This result is explained by the frequency ratio of the interval of pitches. These ISI-histograms also display subharmonics which are explainable as artifacts because of methodical issues. In contrast, the peridocity indicates the frequency of the residue. In order to adapt the model to reality, the width of the statistical distribution of the neural impulses should be considered. The spike-analysis for the recognition of periodicity is investigated on the basis of the statistical distribution and compared with the statistical results of the listener’s assessment of muscial intervals. The experimental data were taken from a study dealing with the assessment of intervals in a musical context (Fricke, Classification: The Ubiquitous Challenge, pp. 585–592, Berlin, Springer, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles M (1994) Firing rates and well-timed events in the cerebral cortex. In: Domany E, Hemmen J, Schulten K (eds) Models of neural networks II, Physics of neural networks. Springer, New York, pp 121–140

    Google Scholar 

  • Békésy Gv (1947) The variation of phase along the basilar membrane with sinusoidal vibrations. J Acoust Soc Am 19:452–460

    Article  Google Scholar 

  • Dudel J (1990) Erregungsübertragung von Zelle zu Zelle. In: Schmidt RF, Thews G (eds) Physiologie des Menschen, Springer, Berlin, pp 45–63

    Google Scholar 

  • Ebeling M (2007) Verschmelzung und neuronale autokorrelation als grundlage einer konsonanztheorie. Lang, Peter, Frankfurt/Main.

    Google Scholar 

  • Eldredge DH (1974) Inner ear-cochlear mechanics and cochlear potentials. In: Handbook of sensory physiology, vol V/1. Springer, Berlin, pp 549–584

    Google Scholar 

  • Fricke JP (1988) Klangbreite und Tonempfindung. Bedingungen kategorialer Wahrnehmung aufgrund experimenteller Untersuchung der Intonation. In: Musikpsychologie. Jahrbuch der Deutschen Gesellschaft für Musikpsychologie, Wilhelmshaven, pp 67–87

    Google Scholar 

  • Fricke JP (2005) Classification of perceived musical intervals. In: Weihs C, Gaul W (eds) Classification - The ubiquitous challenge. Springer, Berlin, pp 585–592

    Chapter  Google Scholar 

  • Kandel E (2006) Auf der Suche nach dem Gedächtnis. Siedler, München

    Google Scholar 

  • Keidel WD (1989) Biokybernetik des Menschen. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Koch C (1999) Biophysics of computation. Information processing in single neurons. Oxford University Press (Computational Neuroscience), New York

    Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat II. Topographical organization. J Neurophysiol 60(6):1823–1840

    Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–134

    Article  Google Scholar 

  • Singer W (2002) Der Beobachter im Gehirn. Suhrkamp, Frankfurt/Main

    Google Scholar 

  • Tramo MJ, Cariani PA, Delgutte B, Braida LD (2001) Neurobiological foundations for the theory of harmony in western tonal music. In: The Biological Foundations of Music, Annals of the New York Academy of Sciences, 930, pp 92–116

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Oliver Fricke for his statistical work, Christoph Reuter for his help preparing Figs. 1 and 2, and Michael Oehler for the English translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jobst Peter Fricke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fricke, J.P. (2012). The Recognition of Consonance Is not Impaired by Intonation Deviations: A Revised Theory. In: Gaul, W., Geyer-Schulz, A., Schmidt-Thieme, L., Kunze, J. (eds) Challenges at the Interface of Data Analysis, Computer Science, and Optimization. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24466-7_39

Download citation

Publish with us

Policies and ethics