Skip to main content

Conformal Decomposition

  • Chapter
  • First Online:
3+1 Formalism in General Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 846))

  • 3682 Accesses

Abstract

This is a technical chapter to prepare the following ones. We motivate and perform a conformal decomposition of the 3-metric on each hypersurface of a 3+1 slicing. To avoid dealing with tensor densities, we introduce a background flat 3-metric. The link between the connections of the physical 3-metric and the conformal one is exhibited, leading to the computation of the Ricci tensor of the conformal 3-metric. Two associated decompositions of the extrinsic curvature are presented, with two different conformal rescalings of the traceless part. The 3+1 Einstein equations are then rewritten in terms of the conformal quantities. Finally, we discuss the Isenberg-Wilson-Mathews approximation to general relativity, which amounts to assuming that the conformal 3-metric is flat and that the slicing is maximal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also Ref. [2] which is freely accessible on the web.

  2. 2.

    The \(C^k_{\;\,ij}\) are not to be confused with the components of the Cotton tensor discussed in Sect. 7.1 Since we shall no longer make use of the latter, no confusion may arise.

  3. 3.

    Notice that we are using a hat, instead of a tilde, to distinguish this quantity from that defined by (7.63).

  4. 4.

    To be discussed in Sect. 10.2.2.

References

  1. Lichnerowicz, A.: L’intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl. 23, 37 (1944). Reprinted in A. Lichnerowicz : Choix d’oeuvres mathématiques, Hermann, Paris (1982), p. 4

    Google Scholar 

  2. Lichnerowicz, A.: Sur les équations relativistes de la gravitation, Bulletin de la S.M.F. 80, 237 (1952). Available at http://www.numdam.org/item?id=BSMF_1952__80__237_0

  3. York, J.W.: Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett. 26, 1656 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  4. York, J.W.: Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082 (1972)

    Article  ADS  Google Scholar 

  5. Cotton, E.: Sur les variétés à à trois dimensions, Annales de la faculté des sciences de Toulouse Sér. 2, 1, 385 (1899). Available at http://www.numdam.org/item?id=AFST_1899_2_1_4_385_0

  6. Damour, T.: Advanced General Relativity, lectures at Institut Henri Poincaré, Paris (2006). Available at http://www.luth.obspm.fr/IHP06/

  7. Blanchet, L.: Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Relativity 9, 4 (2006). http://www.livingreviews.org/lrr-2006-4

  8. Blanchet, L.: Theory of Gravitational Wave Emission, lectures at Institut Henri Poincaré, Paris (2006). Available at http://www.luth.obspm.fr/IHP06/

  9. Shibata, M., Nakamura, T.: Evolution of three-dimensional gravitational waves: harmonic slicing case. Phys. Rev. D 52, 5428 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  10. Baumgarte, T.W., Shapiro, S.L.: Numerical integration of Einstein’s field equations. Phys. Rev. D 59, 024007 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bonazzola, S., Gourgoulhon, E., Grandclément, P., Novak, J.: Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates. Phys. Rev. D 70, 104007 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  12. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973)

    Google Scholar 

  13. Nakamura, T.: 3D Numerical Relativity. In: Sasaki M. (eds) Relativistic Cosmology, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium. Universal Academy Press, Tokyo, (1994) pp. 155

    Google Scholar 

  14. Isenberg, J.A.: Waveless Approximation Theories of Gravity, preprint University of Maryland (1978). Published in Int. J. Mod. Phys. D 17, 265 (2008). Available as http://arxiv.org/abs/gr-qc/0702113 an abridged version can be found in Ref. [16].

  15. Wilson, J.R., Mathews, G.J.: Relativistic hydrodynamics. In: Evans, C.R., Finn, L.S., Hobill, D.W. (eds) Frontiers in numerical relativity., pp. 306. Cambridge Univ. Press, Cambridge (1989)

    Google Scholar 

  16. Isenberg, J., Nester, J.: Canonical Gravity. In: Held, A. (eds) General Relativity and Gravitation, one hundred Years after the Birth of Albert Einstein, pp. 23. Plenum Press, New York (1980)

    Google Scholar 

  17. Friedman, J.L., Uryu, K. and Shibata, M.: Thermodynamics of binary black holes and neutron stars, Phys. Rev. D 65, 064035 (2002), Erratum in Phys. Rev. D 70, 129904(E) (2004)

    Google Scholar 

  18. Cordero-Carrión, I., Ibáñez, J.M., Morales-Lladosa, J.A.: Maximal slicings in spherical symmetry: local existence and construction. J. Math. Phys. 52, 112501 (2011)

    Google Scholar 

  19. Cook, G.B., Shapiro, S.L., Teukolsky, S.A.: Testing a simplified version of Einstein’s equations for numerical relativity. Phys. Rev. D 53, 5533 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  20. Mathews, G.J., Wilson, J.R.: Revised relativistic hydrodynamical model for neutron-star binaries. Phys. Rev. D 61, 127304 (2000)

    Article  ADS  Google Scholar 

  21. Faber, J.A., Grandclément, P., Rasio, F.A.: Mergers of irrotational neutron star binaries in conformally flat gravity. Phys. Rev. D 69, 124036 (2004)

    Article  ADS  Google Scholar 

  22. Oechslin, R., Uryu, K., Poghosyan, G., Thielemann, F.K.: The Influence of Quark Matter at High Densities on Binary Neutron Star Mergers. Mon. Not. Roy. Astron. Soc. 349, 1469 (2004)

    Article  ADS  Google Scholar 

  23. Dimmelmeier, H., Font, J.A., Müller, E.: Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests. Astron. Astrophys 388, 917 (2002)

    Article  ADS  Google Scholar 

  24. Dimmelmeier, H., Font, J.A., Müller, E.: Relativistic simulations of rotational core collapse II. Collapse dynamics and gravitational radiation. Astron. Astrophys 393, 523 (2002)

    Article  ADS  Google Scholar 

  25. Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M., Müller, E.: Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations. Phys. Rev. D 71, 064023 (2005)

    Article  ADS  Google Scholar 

  26. Saijo, M.: The collapse of differentially rotating supermassive stars: conformally flat simulations. Astrophys. J. 615, 866 (2004)

    Article  ADS  Google Scholar 

  27. Saijo, M.: Dynamical bar instability in a relativistic rotational core collapse. Phys. Rev. D 71, 104038 (2005)

    Article  ADS  Google Scholar 

  28. Cordero-Carrión, I., Cerdá-Durán, P., Dimmelmeier, H., Jaramillo, J.L., Novak, J., Gourgoulhon, E.: Improved constrained scheme for the Einstein equations: an approach to the uniqueness issue. Phys. Rev. D 79, 024017 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  29. Shibata, M., Uryu, K.: Merger of black hole-neutron star binaries: nonspinning black hole case. Phys. Rev. D 74, 121503(R) (2006)

    ADS  Google Scholar 

  30. Gourgoulhon, E.: Constrained schemes for evolving the 3+1 Einstein equations, presentation at the CoCoNuT Meeting 2009 (Valencia, Spain, 4–6 November 2009). Available at http://www.mpa-garching.mpg.de/hydro/COCONUT/valencia2009/intro.php

  31. Bucciantini, N., Del Zanna, L.: General relativistic magnetohydrodynamics in axisymmetric dynamical spacetimes: the X-ECHO code. Astron. Astrophys. 528, A101 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gourgoulhon, É. (2012). Conformal Decomposition. In: 3+1 Formalism in General Relativity. Lecture Notes in Physics, vol 846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24525-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24525-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24524-4

  • Online ISBN: 978-3-642-24525-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics