Skip to main content

The Initial Data Problem

  • Chapter
  • First Online:
3+1 Formalism in General Relativity

Part of the book series: Lecture Notes in Physics ((LNP,volume 846))

  • 3604 Accesses

Abstract

The problem of solving the constraint equations to get valid initial data for the time evolution is discussed. We focus on two methods based on the conformal decomposition introduced in Chap. 7: the conformal transverse-traceless method and the conformal thin sandwich method. Both methods are illustrated by initial data in Schwarzschild spacetime. Finally, we give a survey of the construction of initial for binary compact objects, which are of major interest in numerical relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although it is \( \hbox{\it{quasi-linear}}\) in the technical sense, i.e. linear with respect to the highest-order derivatives.

  2. 2.

    See however Ref. [80] for some attempt to circumvent this.

References

  1. Fourès-Bruhat, Y., Choquet-Bruhat, Y.: Sur l’Intégration des Équations de la Relativité Générale. J. Rational Mech. Anal. 5, 951 (1956)

    MathSciNet  MATH  Google Scholar 

  2. Lichnerowicz, A.: L’intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl. 23, 37 (1944); reprinted in A. Lichnerowicz : Choix d’oeuvres mathématiques, Hermann, Paris (1982), p. 4

    Google Scholar 

  3. Choquet-Bruhat, Y.: New elliptic system and global solutions for the constraints equations in general relativity. Commun. Math. Phys. 21, 211 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. York, J.W.: Mapping onto Solutions of the Gravitational Initial Value Problem. J. Math. Phys. 13, 125 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  5. York, J.W.: Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity. J. Math. Phys. 14, 456 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Ó Murchadha, N., York, J.W.: Initial-value problem of general relativity. I. General formulation and physical interpretation. Phys. Rev. D 10, 428 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  7. York, J.W.: Kinematics and dynamics of general relativity. In: Smarr, L.L. (eds) Sources of Gravitational Radiation. pp. 83. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  8. York, J.W.: Conformal “thin-sandwich” data for the initial-value problem of general relativity. Phys. Rev. Lett. 82, 1350 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Pfeiffer, H.P., York, J.W.: Extrinsic curvature and the Einstein constraints. Phys. Rev. D 67, 044022 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bartnik, R.: Quasi-spherical metrics and prescribed scalar curvature. J. Diff. Geom. 37, 31 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint equations. Commun. Math. Phys. 231, 529 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Chruściel, P.T., Galloway, G.J., Pollack, D.: Mathematical general relativity: A sampler. Bull. Amer. Math. Soc. 47, 567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choquet-Bruhat, Y., York, J.W.: The Cauchy Problem. In: Held, A. (eds) General Relativity and Gravitation, one hundred Years after the Birth of Albert Einstein, Vol. 1, pp. 99. Plenum Press, New York (1980)

    Google Scholar 

  15. Cook, G.B.: Initial data for numerical relativity. Living Rev. Relat 3, 5 (2000); http://www.livingreviews.org/lrr-2000-5

  16. Pfeiffer, H.P.: The initial value problem in numerical relativity. In: Proceedings Miami Waves Conference 2004. [preprint gr-qc/0412002].

    Google Scholar 

  17. Bartnik, R., Isenberg, J.: The Constraint Equations, in Ref. [121], p. 1.

    Google Scholar 

  18. Gourgoulhon, E.: Construction of initial data for 3+1 numerical relativity. In: Proceedings of the VII Mexican School on Gravitation and Mathematical Physics, held in Playa del Carmen, Mexico (Nov. 26 - Dec. 2, 2006), J. Phys.: Conf. Ser. 91, 012001 (2007).

    Google Scholar 

  19. Alcubierre, M.: Introduction to 3+1 Numerical Relativity. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  20. Baumgarte, T.W., Shapiro, S.L.: Numerical relativity. Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  21. Choquet-Bruhat, Y.: General Relativity and Einstein’s Equations. Oxford University Press, New York (2009)

    Google Scholar 

  22. York, J.W.: Covariant decompositions of symmetric tensors in the theory of gravitation. Ann. Inst. Henri Poincaré A 21, 319 (1974); available at http://www.numdam.org/item?id=AIHPA_1974__21_4_319_0

  23. Lichnerowicz, A.: Sur les équations relativistes de la gravitation, Bulletin de la S.M.F. 80, 237 (1952); available at http://www.numdam.org/item?id=BSMF_1952__80__237_0

  24. Cantor, M.: The existence of non-trivial asymptotically flat initial data for vacuum spacetimes. Commun. Math. Phys. 57, 83 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Maxwell, D.: Initial data for black holes and rough spacetimes. PhD Thesis, University of Washington (2004)

    Google Scholar 

  26. Isenberg, J.: Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav. 12, 2249 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Dahl, M., Gicquaud, R., Humbert, E.: A limit equation associated to the solvability of the vacuum Einstein constraint equations using the conformal method. preprint arXiv:1012.2188

    Google Scholar 

  28. R. Gicquaud and A. Sakovich : A large class of non constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold, preprint arXiv:1012.2246

    Google Scholar 

  29. Choquet-Bruhat, Y., Christodoulou, D.: Elliptic systems of \(H_{s,{\varvec{\varDelta} }}\) spaces on manifolds which are Euclidean at infinity. Acta Math. 146, 129 (1981)

    Google Scholar 

  30. Choquet-Bruhat, Y., Isenberg, J., York, J.W.: Einstein constraints on asymptotically Euclidean manifolds. Phys. Rev. D 61, 084034 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  31. S.M. Carroll : Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley (Pearson Education), San Fransisco (2004) http://preposterousuniverse.com/spacetimeandgeometry/

  32. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973)

    Google Scholar 

  33. Straumann, N.: General relavity, with applications to astrophysics. Springer, Berlin (2004)

    Google Scholar 

  34. Wald, R.M.: General relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  35. Brandt, S., Brügmann, B.: A simple construction of initial data for multiple black holes. Phys. Rev. Lett. 78, 3606 (1997)

    Article  ADS  Google Scholar 

  36. Bowen, J.M., York, J.W.: Time-asymmetric initial data for black holes and black-hole collisions. Phys. Rev. D 21, 2047 (1980)

    Article  ADS  Google Scholar 

  37. Beig, R., Krammer, W.: Bowen–York tensors. Class. Quantum Grav. 21, S73 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Garat, A., Price, R.H.: Nonexistence of conformally flat slices of the Kerr spacetime. Phys. Rev. D 61, 124011 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  39. Valiente Kroon, J.A.: Nonexistence of conformally flat slices in Kerr and other stationary spacetimes. Phys. Rev. Lett. 92, 041101 (2004)

    Article  MathSciNet  Google Scholar 

  40. Brandt, S.R., Seidel, E.: Evolution of distorted rotating black holes. II. Dynamics and analysis. Phys. Rev. D 52, 870 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  41. Gleiser, R.J., Nicasio, C.O., Price, R.H., Pullin, J.: Evolving the Bowen–York initial data for spinning black holes. Phys. Rev. D 57, 3401 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  42. Baierlein, R.F., Sharp, D.H., Wheeler, J.A.: Three-dimensional geometry as carrier of information about time. Phys. Rev. 126, 1864 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, C., DeWitt, B.S. (eds) Relativity, Groups and Topology., pp. 316. Gordon and Breach, New York (1964)

    Google Scholar 

  44. Bartnik, R., Fodor, G.: On the restricted validity of the thin sandwich conjecture. Phys. Rev. D 48, 3596 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  45. Cook, G.B., Pfeiffer, H.P.: Excision boundary conditions for black-hole initial data. Phys. Rev. D 70, 104016 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  46. Jaramillo, J.L., Gourgoulhon, E., Mena Marugán, G.A.: Inner boundary conditions for black hole initial data derived from isolated horizons. Phys. Rev. D 70, 124036 (2004)

    Article  ADS  Google Scholar 

  47. Caudill, M., Cook, G.B., Grigsby, J.D., Pfeiffer, H.P.: Circular orbits and spin in black-hole initial data. Phys. Rev. D 74, 064011 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  48. Gourgoulhon, E., Jaramillo, J.L.: A 3+1 perspective on null hypersurfaces and isolated horizons. Phys. Rep. 423, 159 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  49. Matera, K., Baumgarte, T.W., Gourgoulhon, E.: Shells around black holes: the effect of freely specifiable quantities in Einstein’s constraint equations. Phys. Rev. D 77, 024049 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  50. Vasset, N., Novak, J., Jaramillo, J.L.: Excised black hole spacetimes: Quasilocal horizon formalism applied to the Kerr example. Phys. Rev. D 79, 124010 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  51. Pfeiffer, H.P., York, J.W.: Uniqueness and Nonuniqueness in the Einstein Constraints. Phys. Rev. Lett. 95, 091101 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  52. Teukolsky, S.A.: Linearized quadrupole waves in general relativity and the motion of test particles. Phys. Rev. D 26, 745 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  53. Baumgarte, T.W., Ó Murchadha, N., Pfeiffer, H.P.: Einstein constraints: Uniqueness and non-uniqueness in the conformal thin sandwich approach. Phys. Rev. D 75, 044009 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  54. Walsh, D.: Non-uniqueness in conformal formulations of the Einstein Constraints. Class. Quantum Grav. 24, 1911 (2007)

    Article  ADS  MATH  Google Scholar 

  55. Cordero-Carrión, I., Cerdá-Durán, P., Dimmelmeier, H., Jaramillo, J.L., Novak, J., Gourgoulhon, E.: Improved constrained scheme for the Einstein equations: An approach to the uniqueness issue. Phys. Rev. D 79, 024017 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  56. Shibata, M., Uryu, K.: Merger of black hole-neutron star binaries: Nonspinning black hole case. Phys. Rev. D 74, 121503(R) (2006)

    ADS  Google Scholar 

  57. York, J.W.: Velocities and momenta in an extended elliptic form of the initial value conditions. Nuovo Cim. B 119, 823 (2004)

    MathSciNet  ADS  Google Scholar 

  58. Grandclément, P., Gourgoulhon, E., Bonazzola, S.: Binary black holes in circular orbits. II. Numerical methods and first results. Phys. Rev. D 65, 044021 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  59. Damour, T., Gourgoulhon, E., Grandclément, P.: Circular orbits of corotating binary black holes: comparison between analytical and numerical results. Phys. Rev. D 66, 024007 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  60. Laguna, P.: Conformal-thin-sandwich initial data for a single boosted or spinning black hole puncture. Phys. Rev. D 69, 104020 (2004)

    Article  ADS  Google Scholar 

  61. Blanchet, L.: Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev. Relat. 9, 4 (2006); http://www.livingreviews.org/lrr-2006-4

  62. Friedman, J.L., Uryu, K., Shibata, M.: Thermodynamics of binary black holes and neutron stars. Phys. Rev. D 65, 064035 (2002); erratum in Phys. Rev. D 70, 129904(E) (2004).

    Google Scholar 

  63. Detweiler, S.: Periodic solutions of the Einstein equations for binary systems. Phys. Rev. D 50, 4929 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  64. Gibbons, G.W., Stewart, J.M.: Absence of asymptotically flat solutions of Einstein’s equations which are periodic and empty near infinity. In: Bonnor, W.B., Islam, J.N., MacCallum, M.A.H. (eds) Classical General Relativity., pp. 77. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  65. Klein, C.: Binary black hole spacetimes with a helical Killing vector. Phys. Rev. D 70, 124026 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  66. Gourgoulhon, E., Grandclément, P., Bonazzola, S.: Binary black holes in circular orbits. I. A global spacetime approach. Phys. Rev. D 65, 044020 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  67. Ansorg, M.: Double-domain spectral method for black hole excision data. Phys. Rev. D 72, 024018 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  68. Ansorg, M.: Multi-Domain spectral method for initial data of arbitrary binaries in general relativity. Class. Quantum Grav. 24, S1 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Dain, S.: Trapped surfaces as boundaries for the constraint equations. Class. Quantum Grav. 21, 555 (2004); errata in Class. Quantum Grav. 22, 769 (2005)

    Google Scholar 

  70. Dain, S., Jaramillo, J.L., Krishnan, B.: On the existence of initial data containing isolated black holes. Phys.Rev. D 71, 064003 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  71. Jaramillo, J.L., Ansorg, M., Limousin, F.: Numerical implementation of isolated horizon boundary conditions. Phys. Rev. D 75, 024019 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  72. Pfeiffer, H.P., Brown, D.A., Kidder, L.E., Lindblom, L., Lovelace, G., Scheel, M.A.: Reducing orbital eccentricity in binary black hole simulations. Class. Quantum Grav. 24, S59 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Grandclément, P. : KADATH: a spectral solver for theoretical physics. J. Comput. Phys. 229, 3334 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Blanchet, L.: Innermost circular orbit of binary black holes at the third post-Newtonian approximation. Phys. Rev. D 65, 124009 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  75. Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  76. Damour, T.: Coalescence of two spinning black holes: An effective one-body approach. Phys. Rev. D 64, 124013 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  77. Lovelace, G.: Reducing spurious gravitational radiation in binary-black-hole simulations by using conformally curved initial data. Class. Quantum Grav. 26, 114002 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  78. Lovelace, G., Owen, R., Pfeiffer, H.P., Chu, T.: Binary-black-hole initial data with nearly extremal spins. Phys. Rev. D 78, 084017 (2008)

    Article  ADS  Google Scholar 

  79. Hannam, M.D., Evans, C.R., Cook, G.B., Baumgarte, T.W.: Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasiequilibrium?. Phys. Rev. D 68, 064003 (2003)

    Article  ADS  Google Scholar 

  80. Hannam, M.D.: Quasicircular orbits of conformal thin-sandwich puncture binary black holes. Phys. Rev. D 72, 044025 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  81. Baumgarte, T.W.: Innermost stable circular orbit of binary black holes. Phys. Rev. D 62, 024018 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  82. Baker, J.G., Campanelli, M., Lousto, C.O., Takahashi, R.: Modeling gravitational radiation from coalescing binary black holes. Phys. Rev. D 65, 124012 (2002)

    Article  ADS  Google Scholar 

  83. Ansorg, M., Brügmann, B., Tichy, W.: Single-domain spectral method for black hole puncture data. Phys. Rev. D 70, 064011 (2004)

    Article  ADS  Google Scholar 

  84. Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Gravitational-Wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006)

    Article  ADS  Google Scholar 

  85. Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J.: Binary black hole merger dynamics and waveforms. Phys. Rev. D 73, 104002 (2006)

    Article  ADS  Google Scholar 

  86. van Meter, J.R., Baker, J.G., Koppitz, M., Choi, D.I.: How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture. Phys. Rev. D 73, 124011 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  87. Campanelli, M., Lousto, C.O., Marronetti, P., Zlochower, Y.: Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)

    Article  ADS  Google Scholar 

  88. Campanelli, M., Lousto, C.O., Zlochower, Y.: Last orbit of binary black holes. Phys. Rev. D 73, 061501(R) (2006)

    MathSciNet  ADS  Google Scholar 

  89. Campanelli, M., Lousto, C.O., Zlochower, Y.: Spinning-black-hole binaries: The orbital hang-up. Phys. Rev. D 74, 041501(R) (2006)

    MathSciNet  ADS  Google Scholar 

  90. Campanelli, M., Lousto, C.O., Zlochower, Y.: Spin-orbit interactions in black-hole binaries. Phys. Rev. D 74, 084023 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  91. Tichy, W., Brügmann, B., Campanelli, M., Diener, P.: Binary black hole initial data for numerical general relativity based on post-Newtonian data. Phys. Rev. D 67, 064008 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  92. Mundim, B.C., Kelly, B.J., Zlochower, Y., Nakano, H., Campanelli, M.: Hybrid black-hole binary initial data. Class. Quantum Grav. 28, 134003 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  93. Nissanke, S.: Post-Newtonian freely specifiable initial data for binary black holes in numerical relativity. Phys. Rev. D 73, 124002 (2006)

    Article  ADS  Google Scholar 

  94. Buonanno, A., Cook, G.B., Pretorius, F.: Inspiral, merger, and ring-down of equal-mass black-hole binaries. Phys. Rev. D 75, 124018 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  95. Buonanno, A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Taracchini, A.: Reducing orbital eccentricity of precessing black-hole binaries. Phys. Rev. D 83, 104034 (2011)

    Article  ADS  Google Scholar 

  96. Gourgoulhon, E.: An introduction to relativistic hydrodynamics, in Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars. edited by M. Rieutord & B. Dubrulle, EAS Publications Series 21, EDP Sciences, Les Ulis (2006), p. 43; available at http://arxiv.org/abs/gr-qc/0603009

  97. Teukolsky, S.A.: Irrotational binary neutron stars in quasi-equilibrium in general relativity. Astrophys. J. 504, 442 (1998)

    Article  ADS  Google Scholar 

  98. Shibata, M.: Relativistic formalism for computation of irrotational binary stars in quasiequilibrium states. Phys. Rev. D 58, 024012 (1998)

    Article  ADS  Google Scholar 

  99. Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L., Teukolsky, S.A.: Binary neutron stars in general relativity: Quasiequilibrium models. Phys. Rev. Lett. 79, 1182 (1997)

    Article  ADS  Google Scholar 

  100. Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L., Teukolsky, S.A.: General relativistic models of binary neutron stars in quasiequilibrium. Phys. Rev. D 57, 7299 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  101. Bonazzola, S., Gourgoulhon, E., Marck, J.-A.: Numerical models of irrotational binary neutron stars in general relativity. Phys. Rev. Lett. 82, 892 (1999)

    Article  ADS  Google Scholar 

  102. Marronetti, P., Mathews, G.J., Wilson, J.R.: Irrotational binary neutron stars in quasiequilibrium. Phys. Rev. D 60, 087301 (1999)

    Article  ADS  Google Scholar 

  103. Uryu, K., Eriguchi, Y.: New numerical method for constructing quasiequilibrium sequences of irrotational binary neutron stars in general relativity. Phys. Rev. D 61, 124023 (2000)

    Article  ADS  Google Scholar 

  104. Uryu, K., Shibata, M., Eriguchi, Y.: Properties of general relativistic, irrotational binary neutron stars in close quasiequilibrium orbits: Polytropic equations of state. Phys. Rev. D 62, 104015 (2000)

    Article  ADS  Google Scholar 

  105. Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A., Bonazzola, S.: Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity: Method and tests. Phys. Rev. D 63, 064029 (2001)

    Google Scholar 

  106. Taniguchi, K., Gourgoulhon, E.: Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. III. Identical and different mass stars with \(\gamma=2\). Phys. Rev. D 66, 104019 (2002)

    Google Scholar 

  107. Taniguchi, K., Gourgoulhon, E.: Various features of quasiequilibrium sequences of binary neutron stars in general relativity. Phys. Rev. D 68, 124025 (2003)

    Article  ADS  Google Scholar 

  108. Taniguchi, K., Shibata, M.: Binary neutron stars in quasi-equilibrium. Astrophys. J. Suppl. Ser. 188, 187 (2010)

    Article  ADS  Google Scholar 

  109. Bejger, M., Gondek-Rosińska, D., Gourgoulhon, E., Haensel, P., Taniguchi, K., Zdunik, J.L.: Impact of the nuclear equation of state on the last orbits of binary neutron stars. Astron. Astrophys. 431, 297–306 (2005)

    Article  ADS  Google Scholar 

  110. Oechslin, R., Janka, H.-T., Marek, A.: Relativistic neutron star merger simulations with non-zero temperature equations of state I. Variation of binary parameters and equation of state. Astron. Astrophys. 467, 395 (2007)

    Google Scholar 

  111. Oechslin, R., Uryu, K., Poghosyan, G., Thielemann, F.K.: The influence of quark matter at high densities on binary neutron star mergers. Mon. Not. Roy. Astron. Soc. 349, 1469 (2004)

    Article  ADS  Google Scholar 

  112. Limousin, F., Gondek-Rosińska, D., Gourgoulhon, E.: Last orbits of binary strange quark stars . Phys Rev. D 71, 064012 (2005)

    Article  ADS  Google Scholar 

  113. Uryu, K., Limousin, F., Friedman, J.L., Gourgoulhon, E., Shibata, M.: Binary neutron stars: Equilibrium models beyond spatial conformal flatness. Phys. Rev. Lett. 97, 171101 (2006)

    Article  ADS  Google Scholar 

  114. Uryu, K., Limousin, F., Friedman, J.L., Gourgoulhon, E., Shibata, M.: Nonconformally flat initial data for binary compact objects. Phys. Rev. D 80, 124004 (2009)

    Article  ADS  Google Scholar 

  115. Shibata, M., Uryu, K., Friedman, J.L.: Deriving formulations for numerical computation of binary neutron stars in quasicircular orbits. Phys. Rev. D 70, 044044 (2004); errata in Phys. Rev. D 70, 129901(E) (2004)

    Google Scholar 

  116. Damour, T., Nagar, A.: Effective one body description of tidal effects in inspiralling compact binaries. Phys. Rev. D 81, 084016 (2010)

    Article  ADS  Google Scholar 

  117. Grandclément, P.: Accurate and realistic initial data for black hole-neutron star binaries. Phys. Rev. D 74, 124002 (2006); erratum in Phys. Rev. D 75, 129903(E) (2007).

    Google Scholar 

  118. Taniguchi, K., Baumgarte, T.W., Faber, J.A., Shapiro, S.L.: Quasiequilibrium sequences of black-hole-neutron-star binaries in general relativity. Phys. Rev. D 74, 041502(R) (2006)

    Article  ADS  Google Scholar 

  119. Taniguchi, K., Baumgarte, T.W., Faber, J.A., Shapiro, S.L.: Quasiequilibrium black hole-neutron star binaries in general relativity. Phys. Rev. D 75, 084005 (2007)

    Article  ADS  Google Scholar 

  120. Tsokaros, A.A., Uryu, K.: Numerical method for binary black hole/neutron star initial data: Code test. Phys. Rev. D 75, 044026 (2007)

    Article  ADS  Google Scholar 

  121. Chruściel, P.T., Friedrich, H. (eds): The Einstein equations and the large scale behavior of gravitational fields—50 years of the Cauchy problem in general relativity. Birkhäuser Verlag, Basel (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gourgoulhon, É. (2012). The Initial Data Problem. In: 3+1 Formalism in General Relativity. Lecture Notes in Physics, vol 846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24525-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24525-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24524-4

  • Online ISBN: 978-3-642-24525-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics