Skip to main content

Building Self-stabilizing Overlay Networks with the Transitive Closure Framework

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6976))

Included in the following conference series:

Abstract

Overlay networks are expected to operate in hostile environments, where node and link failures are commonplace. One way to make overlay networks robust is to design self-stabilizing overlay networks, i.e., overlay networks that can handle node and link failures without any external supervision. In this paper, we first describe a simple framework, which we call the Transitive Closure Framework (TCF), for the self-stabilizing construction of an extensive class of overlay networks. Like previous self-stabilizing overlay networks, TCF permits node degrees to grow to Ω(n), independent of the maximum degree of the target overlay network. However, TCF has several advantages over previous work in this area: (i) it is a “framework” and can be used for the construction of a variety of overlay networks, not just a particular network, (ii) it runs in an optimal number of rounds for a variety of overlay networks, and (iii) it can easily be composed with other non-self-stabilizing protocols that can recover from specific bad initial states in a memory-efficient fashion. We demonstrate the power of our framework by deriving from TCF a simple self-stabilizing protocol for constructing Skip+ graphs (Jacob et al., PODC 2009) which presents optimal convergence time from any configuration, and requires only a O(1) factor of extra memory for handling node Joins.

An early version of this work appeared as a Brief Announcement in PODC 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspnes, J., Shah, G.: Skip graphs. In: SODA 2003: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 384–393. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Google Scholar 

  2. Aspnes, J., Wu, Y.: O(logn)-time overlay network construction from graphs with out-degree 1. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 286–300. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  4. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: PODC 2009: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, pp. 131–140. ACM, New York (2009)

    Google Scholar 

  5. Kniesburges, S., Scheideler, C., Koutsopoulos, A.: Re-chord: A self-stabilizing chord overlay network. In: SPAA 2011: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures. ACM, New York (2011)

    Google Scholar 

  6. Onus, M., Richa, A.W., Scheideler, C.: Linearization: Locally self-stabilizing sorting in graphs. In: ALENEX. SIAM, Philadelphia (2007)

    Google Scholar 

  7. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berns, A., Ghosh, S., Pemmaraju, S.V. (2011). Building Self-stabilizing Overlay Networks with the Transitive Closure Framework. In: Défago, X., Petit, F., Villain, V. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2011. Lecture Notes in Computer Science, vol 6976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24550-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24550-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24549-7

  • Online ISBN: 978-3-642-24550-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics