Skip to main content

Theoretical Foundations of Gaussian Convolution by Extended Box Filtering

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6667))

Abstract

Gaussian convolution is of fundamental importance in linear scale-space theory and in numerous applications. We introduce iterated extended box filtering as an efficient and highly accurate way to compute Gaussian convolution. Extended box filtering approximates a continuous box filter of arbitrary non-integer standard deviation. It provides a much better approximation to Gaussian convolution than conventional iterated box filtering. Moreover, it retains the efficiency benefits of iterated box filtering where the runtime is a linear function of the image size and does not depend on the standard deviation of the Gaussian. In a detailed mathematical analysis, we establish the fundamental properties of our approach and deduce its error bounds. An experimental evaluation shows the advantages of our method over classical implementations of Gaussian convolution in the spatial and the Fourier domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bracewell, R.N.: The Fourier transform and its applications, 3rd edn. McGraw-Hill, New York (1999)

    MATH  Google Scholar 

  2. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Article  Google Scholar 

  3. Deriche, R.: Fast algorithms for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 78–87 (1990)

    Article  Google Scholar 

  4. Florack, L.: Image Structure, Computational Imaging and Vision, vol. 10. Kluwer, Dordrecht (1997)

    Google Scholar 

  5. Florack, L.: A spatio-frequency trade-off scale for scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 1050–1055 (2000)

    Article  Google Scholar 

  6. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305 (June 1987)

    Google Scholar 

  7. Gourlay, A.R.: Implicit convolution. Image and Vision Computing 3, 15–23 (1985)

    Article  Google Scholar 

  8. Iijima, T.: Theory of pattern recognition. Electronics and Communications in Japan pp. 123–134 (November 1963) (in English)

    Google Scholar 

  9. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)

    Book  MATH  Google Scholar 

  10. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  11. Marr, D., Hildreth, E.: Theory of edge detection. Proceedings of the Royal Society of London, Series B 207, 187–217 (1980)

    Article  Google Scholar 

  12. Norman, E.: A discrete analogue of the Weierstrass transform. Proceedings of the American Mathematical Society 11(596-604) (1960)

    Google Scholar 

  13. Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.): Gaussian Scale-Space Theory, Computational Imaging and Vision, vol. 8. Kluwer, Dordrecht (1997)

    Google Scholar 

  14. Triggs, B., Sdika, M.: Boundary conditions for Young - van Vliet recursive filtering. IEEE Transactions on Signal Processing 54(5), 1–2 (2006)

    Article  MATH  Google Scholar 

  15. Wells, W.M.: Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(2), 234–239 (1986)

    Article  Google Scholar 

  16. Witkin, A.P.: Scale-space filtering. In: Proc. Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 945–951. Karlsruhe, West Germany (1983)

    Google Scholar 

  17. Young, I.T., van Vliet, L.J.: Recursive implementation of the Gaussian filter. Signal Processing 44, 139–151 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gwosdek, P., Grewenig, S., Bruhn, A., Weickert, J. (2012). Theoretical Foundations of Gaussian Convolution by Extended Box Filtering. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics