Skip to main content

Learning about the Learning Process

  • Conference paper
Advances in Intelligent Data Analysis X (IDA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7014))

Included in the following conference series:

Abstract

This work addresses the problem of mining data stream generated in dynamic environments where the distribution underlying the observations may change over time. We present a system that monitors the evolution of the learning process. The system is able to self-diagnosis degradations of this process, using change detection mechanisms, and self-repairs the decision models. The system uses meta-learning techniques that characterize the domain of applicability of previously learned models. The meta-learns can detect re-occurrence of contexts, using unlabeled examples, and take pro-active actions by activating previously learned models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dijkstra, W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  2. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Granitzer, M., Kröll, M., Seifert, C., Rath, A.S., Weber, N., Dietzel, O., Lindstaedt, S.N.: Analysis of machine learning techniques for context extraction. In: Pichappan, P., Abraham, A. (eds.) ICDIM, pp. 233–240. IEEE, Los Alamitos (2008)

    Google Scholar 

  4. Grant, E., Leavenworth, R.: Statistical Quality Control. McGraw-Hill, New York (1996)

    MATH  Google Scholar 

  5. Harries, M.B., Sammut, C., Horn, K.: Extracting hidden context. Machine Learning 32, 101–126 (1998)

    Article  MATH  Google Scholar 

  6. Katakis, I., Tsoumakas, G., Vlahavas, I.: Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowledge and Information Systems 22, 371–391 (2010)

    Article  Google Scholar 

  7. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis 8(3), 281–300 (2004)

    Google Scholar 

  8. Lazarescu, M.M.: A multi-resolution learning approach to tracking concept drift and recurrent concepts. In: Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems (2005)

    Google Scholar 

  9. Ortega, J.: Exploiting multiple existing models and learning algorithms. In: AAAI 1996 - Workshop in Induction of Multiple Learning Models, pp. 17–21 (1995)

    Google Scholar 

  10. Ortega, J., Koppel, M., Argamon, S.: Arbitrating among competing classifiers using learned referees. Knowledge and Information Systems 3(4), 470–490 (2001)

    Article  MATH  Google Scholar 

  11. Ramamurthy, S., Bhatnagar, R.: Tracking recurrent concept drift in streaming data using ensemble classifiers. In: ICMLA 2007: Proceedings of the Sixth International Conference on Machine Learning and Applications, pp. 404–409. IEEE Computer Society, Washington, DC, USA (2007)

    Google Scholar 

  12. Seewald, A., Fürnkranz, J.: An evaluation of grading classifiers. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) IDA 2001. LNCS, vol. 2189, pp. 115–124. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Nick Street, W., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: Knowledge Discovery and Data Mining, pp. 377–382. ACM Press, New York (2001)

    Google Scholar 

  14. Turney, P.: The management of context-sensitive features: A review of strategies (1996)

    Google Scholar 

  15. Widmer, G.: Tracking context changes through meta-learning. Machine Learning 27(3), 259–286 (1997)

    Article  Google Scholar 

  16. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

  17. Yang, Y., Wu, X., Zhu, X.: Mining in anticipation for concept change: Proactive-reactive prediction in data streams. Data Mining and Knowledge Discovery 13(3), 261–289 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gama, J., Kosina, P. (2011). Learning about the Learning Process. In: Gama, J., Bradley, E., Hollmén, J. (eds) Advances in Intelligent Data Analysis X. IDA 2011. Lecture Notes in Computer Science, vol 7014. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24800-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24800-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24799-6

  • Online ISBN: 978-3-642-24800-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics