Skip to main content

Design of a High Performance Quad-Rotor Robot Based on a Layered Real-Time System Architecture

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7101))

Included in the following conference series:

Abstract

This work presents the results of an effort to create a high performance quad-rotor MAV named iQCopter for research in the field of swarm robotics and vision-based autonomous operation. During the design, navigational and computational capabilities have been of major priority. A distinctive feature of the iQCopter is its layered system architecture using a comparably powerful, hard real-time capable x86-computer even in the innermost control loop for maximum transparency and ease of use while a simple fixed-point microcontroller provides a low-level sensor interface and a fallback solution for safety reasons. Finally, a successful system identification and subsequent design of an aggressive H ∞  controller are presented as benchmark cases to demonstrate the performance of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Analog Devices: ADIS 16405 (April 2011), http://www.analog.com/en/mems-sensors/inertial-sensors/adis16405/products/product.html

  2. Bachrach, A., Winter, A.D., He, R., Hemann, G., Prentice, S., Roy, N.: RANGE-robust autonomous navigation in gps-denied environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1096–1097 (2010)

    Google Scholar 

  3. Bouabdallah, S., Noth, A., Siegwart, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2451–2456 (2004)

    Google Scholar 

  4. Conrad Electronic: Quadrocopter 450 ARF (April 2011), http://www.conrad.de/ce/de/product/208000/QUADROCOPTER-450-ARF-35-MHz/

  5. Gentoo: (April 2011), http://www.gentoo.org/

  6. Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2878–2883 (2009)

    Google Scholar 

  7. Hoffmann, G., Rajnarayan, D.G., Waslander, S.L., Dostal, D., Jang, J., Tomlin, C.: The Stanford Testbed of Autonomous Rotorcraft for Multi Agent Control (STARMAC). In: The 23rd Digital Avionics Systems Conference. vol. 2 (2004)

    Google Scholar 

  8. How, J., Bethke, B., Frank, A., Dale, D., Vian, J.: Real-time indoor autonomous vehicle test environment. IEEE Control Systems Magazine 28(2), 51–64 (2008)

    Article  MathSciNet  Google Scholar 

  9. Ljung, L.: System identification: Theory for the user, 2nd edn. Prentice Hall information and system sciences series. Prentice Hall PTR, Upper Saddle River, NJ (1999)

    MATH  Google Scholar 

  10. Meier, L., Fraundorfer, F., Pollefeys, M.: The intelligent flying eye. SPIE Newsroom (2011)

    Google Scholar 

  11. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP Multiple Micro-UAV Testbed. IEEE Robotics & Automation Magazine 17(3), 56–65 (2010)

    Article  Google Scholar 

  12. Pilz, U., Gropengießer, W., Walder, F., Witt, J., Werner, H.: Quadrocoter Trajectory Tracking Using RTK-GPS and Vision-Based Hovering. In: 4th International Conference on Robotics and Applications (2011)

    Google Scholar 

  13. Pounds, P., Mahony, R., Corke, P.: Modelling and Control of a Quad-Rotor Robot. In: Proceedings of the Australasian Conference on Robotics and Automation (2006)

    Google Scholar 

  14. Witt, J., Annighöfer, B., Falkenberg, O., Pilz, U., Weltin, U., Werner, H., Thielecke, F.: TUHH Quadrokopter Projekt (April 2011), http://www.tu-harburg.de/quadrokopter

  15. Xenomai: (April 2011), http://www.xenomai.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Witt, J., Annighöfer, B., Falkenberg, O., Weltin, U. (2011). Design of a High Performance Quad-Rotor Robot Based on a Layered Real-Time System Architecture. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25486-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25486-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25485-7

  • Online ISBN: 978-3-642-25486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics