Skip to main content

Ensuring Message Embedding in Wet Paper Steganography

  • Conference paper
Cryptography and Coding (IMACC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7089))

Included in the following conference series:

Abstract

Syndrome coding has been proposed by Crandall in 1998 as a method to stealthily embed a message in a cover-medium through the use of bounded decoding. In 2005, Fridrich et al. introduced wet paper codes to improve the undetectability of the embedding by enabling the sender to lock some components of the cover-data, according to the nature of the cover-medium and the message. Unfortunately, almost all existing methods solving the bounded decoding syndrome problem with or without locked components have a non-zero probability to fail. In this paper, we introduce a randomized syndrome coding, which guarantees the embedding success with probability one. We analyze the parameters of this new scheme in the case of perfect codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R.J., Petitcolas, F.A.P.: On the limits of steganography. IEEE Journal on Selected Areas in Communications 16(4), 474–481 (1998)

    Article  Google Scholar 

  2. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. on Information Theory 24(3), 384–386 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bierbrauer, J.: On Crandall’s problem. Personal communication (2001), http://www.ws.binghamton.edu/fridrich/covcodes.pdf

  4. Bierbrauer, J., Fridrich, J.: Constructing Good Covering Codes for Applications in Steganography. In: Shi, Y.Q. (ed.) Transactions on Data Hiding and Multimedia Security III. LNCS, vol. 4920, pp. 1–22. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Brent, R.P., Gao, S., Lauder, A.G.B.: Random Krylov spaces over finite fields. SIAM J. Discrete Math. 16, 276–287 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cachin, C.: An Information-Theoretic Model for Steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Cachin, C.: An information-theoretic model for steganography. Information and Computation 192(1), 41–56 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Courtois, N.T., Finiasz, M., Sendrier, N.: How to Achieve a McEliece-Based Digital Signature Scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Crandall, R.: Some notes on steganography (1998), http://os.inf.tu-dresden.de/~westfeld/crandall.pdf ; posted on the steganography mailing list

  10. Filler, T., Fridrich, J.: Wet ZZW construction for steganography. In: IEEE International Workshop on Information Forensics and Security, WIFS 2009, pp. 131–135 (2009)

    Google Scholar 

  11. Filler, T., Fridrich, J.: Minimizing additive distortion functions with non-binary embedding operation in steganography. In: IEEE International Workshop on Information Forensics and Security, WIFS 2010 (2010)

    Google Scholar 

  12. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography unsing syndrome-trellis codes. IEEE Trans. on Information Forensics and Security (2011)

    Google Scholar 

  13. Filler, T., Judas, J., Fridrich, J.: Minimizing embedding impact in steganography using trellis-coded quantization. In: Proceedings of the SPIE IS&T/SPIE International Symposium on Electronic Imaging 2010 - Media Forensics and Security II, vol. 7541. SPIE (2010)

    Google Scholar 

  14. Fontaine, C., Galand, F.: How Can Reed-Solomon Codes Improve Steganographic Schemes. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 130–144. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Fontaine, C., Galand, F.: How Reed-Solomon codes can improve steganographic schemes. EURASIP J. Inf. Secur. 2009, 1–10 (2009)

    Article  Google Scholar 

  16. Fridrich, J.: Asymptotic behavior of the ZZW embedding construction. IEEE Transactions on Information Forensics and Security 4(1), 151–153 (2009)

    Article  Google Scholar 

  17. Fridrich, J., Filler, T.: Practical methods for minimizing embedding impact in steganography. In: Proceedings of the SPIE IS&T/SPIE International Symposium on Electronic Imaging 2007 - Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505. SPIE (2007)

    Google Scholar 

  18. Fridrich, J., Goljan, M., Lisonek, P., Soukal, D.: Writing on wet paper. IEEE Trans. on Signal Processing 53(10), 3923–3935 (2005)

    Article  MathSciNet  Google Scholar 

  19. Fridrich, J., Goljan, M., Soukal, D.: Wet paper codes with improved embedding efficiency. IEEE Trans. on Information Forensics and Security 1(1), 102–110 (2006)

    Article  Google Scholar 

  20. Fridrich, J., Soukal, D.: Matrix embedding for large payloads. IEEE Trans. on Information Forensics and Security 1(3), 390–395 (2006)

    Article  Google Scholar 

  21. Fridrich, J., Goljan, M., Soukal, D.: Efficient Wet Paper Codes. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 204–218. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Galand, F., Kabatiansky, G.: Information hiding by coverings. In: Proc. ITW 2003, pp. 151–154 (2003)

    Google Scholar 

  23. Galand, F., Kabatiansky, G.: Coverings, centered codes, and combinatorial steganography. Problems of Information Transmission 45(3), 289–297 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kodovský, J., Fridrich, J., Pevný, T.: Statistically undetectable jpeg steganography: Dead ends, challenges, and opportunities. In: Proc. of the ACM Multimedia and Security Workshop 2007, pp. 3–14. ACM (2007)

    Google Scholar 

  25. McLoughlin, A.: The complexity of computing the covering radius of a code. IEEE Trans. on Information Theory 30(6), 800–804 (1984)

    Article  MathSciNet  Google Scholar 

  26. Munuera, C., Barbier, M.: Wet paper codes and the dual distance in steganography (April 2011), http://arxiv.org/abs/1104.1970

  27. Ould Medeni, M., Souidi, E.M.: A steganography schema and error-correcting codes. Journal of Theoretical and Applied Information Technology 18(1), 42–47 (2010)

    Google Scholar 

  28. Rifà, J., Ronquillo, L.: Product perfect Z2Z4-linear codes in steganography. In: International Symposium on Information Theory and its Applications, ISITA 2010 (2010)

    Google Scholar 

  29. Rifà-Pous, H., Rifà, J.: Product perfect codes and steganography. Digital Signal Processing 19(4), 764–769 (2009)

    Article  MATH  Google Scholar 

  30. Sachnev, V., Kim, H., Zhang, R.: Less detectable jpeg steganography method based on heuristic optimization and BCH syndrom coding. In: ACM Multimedia & Security 2009, pp. 131–139. ACM Press (2009)

    Google Scholar 

  31. Schönfeld, D., Winkler, A.: Embedding with syndrome coding based on BCH codes. In: Proceedings of the 8th Workshop on Multimedia and Security, pp. 214–223. ACM (2006)

    Google Scholar 

  32. Schönfeld, D., Winkler, A.: Reducing the Complexity of Syndrome Coding for Embedding. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 145–158. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Simmons, G.: The prisoners’ problem and the subliminal channel. In: Advances in Cryptology 1983, pp. 51–67. Plenum Press (1984)

    Google Scholar 

  34. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. on Information Theory 43(6), 1757–1766 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vladut, S., Nogin, D., Tsfasman, M.: Algebraic Geometric Codes: Basic Notions (Mathematical Surveys and Monographs). American Mathematical Society (2007)

    Google Scholar 

  36. Westfeld, A.: F5 - A Steganographic Algorithm. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  37. Zhang, R., Sachnev, V., Kim, H.J.: Fast BCH Syndrome Coding for Steganography. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 48–58. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  38. Zhang, W., Zhang, X., Wang, S.: Near-optimal codes for information embedding in gray-scale signals. IEEE Trans. on Information Theory 56(3), 1262–1270 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zhang, W.-M., Zhang, X., Wang, S.: Maximizing Steganographic Embedding Efficiency by Combining Hamming Codes and Wet Paper Codes. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 60–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Augot, D., Barbier, M., Fontaine, C. (2011). Ensuring Message Embedding in Wet Paper Steganography. In: Chen, L. (eds) Cryptography and Coding. IMACC 2011. Lecture Notes in Computer Science, vol 7089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25516-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25516-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25515-1

  • Online ISBN: 978-3-642-25516-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics