Skip to main content

Natural Antisense Transcripts Mediate Regulation of Gene Expression

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Part of the book series: RNA Technologies ((RNATECHN))

  • 1790 Accesses

Abstract

Mammalian genomes encode numerous natural antisense transcripts, but the function of these transcripts is not well understood. Functional validation studies indicate that antisense transcripts are not a uniform group of regulatory RNAs but instead belong to multiple categories with some common features. Recent evidence indicates that antisense transcripts are frequently functional and use diverse transcriptional and posttranscriptional gene regulatory mechanisms to carry out a wide variety of biological roles.

Karolinska Institutet previously published part of this work as Mohammad Ali Faghihi’s thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apel TW, Mautner J, Polack A et al (1992) Two antisense promoters in the immunoglobulin mu-switch region drive expression of c-myc in the Burkitt’s lymphoma cell line BL67. Oncogene 7:1267–1271

    PubMed  CAS  Google Scholar 

  • Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764

    PubMed  CAS  Google Scholar 

  • Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18:3355–3369

    PubMed  CAS  Google Scholar 

  • Beltran M, Puig I, Pena C et al (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22:756–769

    PubMed  CAS  Google Scholar 

  • Bernard D, Martinez-Leal JF, Rizzo S et al (2005) CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene 24:5543–5551

    PubMed  CAS  Google Scholar 

  • Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    PubMed  CAS  Google Scholar 

  • Bertone P, Stolc V, Royce TE et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246

    PubMed  CAS  Google Scholar 

  • Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128:993–1004

    PubMed  CAS  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    PubMed  CAS  Google Scholar 

  • Bolland DJ, Wood AL, Johnston CM et al (2004) Antisense intergenic transcription in V(D)J recombination. Nat Immunol 5:630–637

    PubMed  CAS  Google Scholar 

  • Bolland DJ, Wood AL, Afshar R et al (2007) Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 27:5523–5533

    PubMed  CAS  Google Scholar 

  • Breiling A, Sessa L, Orlando V (2007) Biology of polycomb and trithorax group proteins. Int Rev Cytol 258:83–136

    PubMed  CAS  Google Scholar 

  • Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    PubMed  CAS  Google Scholar 

  • Cao Q, Yu J, Dhanasekaran SM et al (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27:7274–7284

    PubMed  CAS  Google Scholar 

  • Capaccioli S, Quattrone A, Schiavone N et al (1996) A bcl-2/IgH antisense transcript deregulates bcl-2 gene expression in human follicular lymphoma t(14;18) cell lines. Oncogene 13:105–115

    PubMed  CAS  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    PubMed  CAS  Google Scholar 

  • Cawley S, Bekiranov S, Ng HH et al (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499–509

    PubMed  CAS  Google Scholar 

  • Cayre A, Rossignol F, Clottes E et al (2003) aHIF but not HIF-1alpha transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res 5:R223–R230

    PubMed  CAS  Google Scholar 

  • Chamberlain SJ, Brannan CI (2001) The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics 73:316–322

    PubMed  CAS  Google Scholar 

  • Chan WY, Wu SM, Ruszczyk L et al (2006) The complexity of antisense transcription revealed by the study of developing male germ cells. Genomics 87:681–692

    PubMed  CAS  Google Scholar 

  • Chen J, Sun M, Kent WJ et al (2004) Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res 32:4812–4820

    PubMed  CAS  Google Scholar 

  • Chen J, Sun M, Hurst LD et al (2005) Human antisense genes have unusually short introns: evidence for selection for rapid transcription. Trends Genet 21:203–207

    PubMed  CAS  Google Scholar 

  • Cheng J, Kapranov P, Drenkow J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    PubMed  CAS  Google Scholar 

  • Chow JC, Yen Z, Ziesche SM et al (2005) Silencing of the mammalian X chromosome. Annu Rev Genomics Hum Genet 6:69–92

    PubMed  CAS  Google Scholar 

  • Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    PubMed  CAS  Google Scholar 

  • Cullen BR (2002) RNA interference: antiviral defense and genetic tool. Nat Immunol 3:597–599

    PubMed  CAS  Google Scholar 

  • Dahary D, Elroy-Stein O, Sorek R (2005) Naturally occurring antisense: transcriptional leakage or real overlap? Genome Res 15:364–368

    PubMed  CAS  Google Scholar 

  • Dolnick BJ (1993) Cloning and characterization of a naturally occurring antisense RNA to human thymidylate synthase mRNA. Nucleic Acids Res 21:1747–1752

    PubMed  CAS  Google Scholar 

  • Dreesen TD, Adamson AW, Tekle M et al (2006) A newly discovered member of the fatty acid desaturase gene family: a non-coding, antisense RNA gene to delta5-desaturase. Prostaglandins Leukot Essent Fatty Acids 75:97–106

    PubMed  CAS  Google Scholar 

  • Duan G, Saint RB, Helliwell CA et al (2010) Expression of Caenorhabditis elegans RNA-directed RNA polymerase in transgenic Drosophila melanogaster does not affect morphological development. Transgenic Res 19:1121–1128

    PubMed  CAS  Google Scholar 

  • Enerly E, Sheng Z, Li KB (2005) Natural antisense as potential regulator of alternative initiation, splicing and termination. In Silico Biol 5:367–377

    PubMed  CAS  Google Scholar 

  • Faghihi MA, Wahlestedt C (2006) RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol 7:R38

    PubMed  Google Scholar 

  • Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643

    PubMed  CAS  Google Scholar 

  • Faghihi MA, Modarresi F, Khalil AM et al (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730

    PubMed  CAS  Google Scholar 

  • Fahey ME, Moore TF, Higgins DG (2002) Overlapping antisense transcription in the human genome. Comp Funct Genomics 3:244–253

    PubMed  CAS  Google Scholar 

  • Fanti L, Perrini B, Piacentini L et al (2008) The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma 117:25–39

    PubMed  CAS  Google Scholar 

  • Finocchiaro G, Carro MS, Francois S et al (2007) Localizing hotspots of antisense transcription. Nucleic Acids Res 35:1488–1500

    PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    PubMed  CAS  Google Scholar 

  • Ge X, Wu Q, Jung YC et al (2006) A large quantity of novel human antisense transcripts detected by LongSAGE. Bioinformatics 22:2475–2479

    PubMed  CAS  Google Scholar 

  • Ge X, Rubinstein WS, Jung YC et al (2008) Genome-wide analysis of antisense transcription with Affymetrix exon array. BMC Genomics 9:27

    PubMed  Google Scholar 

  • Grimm D (2009) Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev 61:672–703

    PubMed  CAS  Google Scholar 

  • Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    PubMed  CAS  Google Scholar 

  • Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    PubMed  CAS  Google Scholar 

  • Gyorffy A, Surowiak P, Tulassay Z et al (2007) Highly expressed genes are associated with inverse antisense transcription in mouse. J Genet 86:103–109

    PubMed  CAS  Google Scholar 

  • Hastings ML, Milcarek C, Martincic K et al (1997) Expression of the thyroid hormone receptor gene, erbAalpha, in B lymphocytes: alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels. Nucleic Acids Res 25:4296–4300

    PubMed  CAS  Google Scholar 

  • Hatzoglou A, Deshayes F, Madry C et al (2002) Natural antisense RNA inhibits the expression of BCMA, a tumour necrosis factor receptor homologue. BMC Mol Biol 3:4

    PubMed  Google Scholar 

  • Hawkins PG, Morris KV (2008) RNA and transcriptional modulation of gene expression. Cell Cycle 7:602–607

    PubMed  CAS  Google Scholar 

  • Hayward BE, Bonthron DT (2000) An imprinted antisense transcript at the human GNAS1 locus. Hum Mol Genet 9:835–841

    PubMed  CAS  Google Scholar 

  • He Y, Vogelstein B, Velculescu VE et al (2008) The antisense transcriptomes of human cells. Science 322:1855–1857

    PubMed  CAS  Google Scholar 

  • Herzing LB, Kim SJ, Cook EH et al (2001) The human aminophospholipid-transporting ATPase gene ATP10C maps adjacent to UBE3A and exhibits similar imprinted expression. Am J Hum Genet 68:1501–1505

    PubMed  CAS  Google Scholar 

  • Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419

    PubMed  CAS  Google Scholar 

  • Imamura T, Yamamoto S, Ohgane J et al (2004) Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 322:593–600

    PubMed  CAS  Google Scholar 

  • Johnstone KA, DuBose AJ, Futtner CR et al (2006) A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects. Hum Mol Genet 15:393–404

    PubMed  CAS  Google Scholar 

  • Julius MA, Street AJ, Fahrlander PD et al (1988) Translocated c-myc genes produce chimeric transcripts containing antisense sequences of the immunoglobulin heavy chain locus in mouse plasmacytomas. Oncogene 2:469–476

    PubMed  CAS  Google Scholar 

  • Kanduri C (2008) Functional insights into long antisense noncoding RNA Kcnq1ot1 mediated bidirectional silencing. RNA Biol 5:208–211

    PubMed  CAS  Google Scholar 

  • Kapranov P, Cheng J, Dike S et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488

    PubMed  CAS  Google Scholar 

  • Katayama S, Tomaru Y, Kasukawa T et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    PubMed  Google Scholar 

  • Kato C, Tochigi M, Ohashi J et al (2008) Association study of the 15q11-q13 maternal expression domain in Japanese autistic patients. Am J Med Genet B Neuropsychiatr Genet 147B:1008–1012

    PubMed  CAS  Google Scholar 

  • Kawaji H, Nakamura M, Takahashi Y et al (2008) Hidden layers of human small RNAs. BMC Genomics 9:157

    PubMed  Google Scholar 

  • Khochbin S, Brocard MP, Grunwald D et al (1992) Antisense RNA and p53 regulation in induced murine cell differentiation. Ann NY Acad Sci 660:77–87

    PubMed  CAS  Google Scholar 

  • Kimelman D, Kirschner MW (1989) An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell 59:687–696

    PubMed  CAS  Google Scholar 

  • Kiyosawa H, Yamanaka I, Osato N et al (2003) Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res 13:1324–1334

    PubMed  CAS  Google Scholar 

  • Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135:3–9

    PubMed  CAS  Google Scholar 

  • Klimov D, Skoblov M, Ryazantzev A et al (2006) In silico search for natural antisense transcripts reveals their differential expression in human tumors. J Bioinform Comput Biol 4:515–521

    PubMed  CAS  Google Scholar 

  • Komine Y, Nakamura K, Katsuki M et al (2006) Novel transcription factor zfh-5 is negatively regulated by its own antisense RNA in mouse brain. Mol Cell Neurosci 31:273–283

    PubMed  CAS  Google Scholar 

  • Kramer C, Loros JJ, Dunlap JC et al (2003) Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature 421:948–952

    PubMed  CAS  Google Scholar 

  • Krystal GW, Armstrong BC, Battey JF (1990) N-myc mRNA forms an RNA-RNA duplex with endogenous antisense transcripts. Mol Cell Biol 10:4180–4191

    PubMed  CAS  Google Scholar 

  • Kumar M, Carmichael GG (1997) Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci USA 94:3542–3547

    PubMed  CAS  Google Scholar 

  • Kumar M, Carmichael GG (1998) Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62:1415–1434

    PubMed  CAS  Google Scholar 

  • Lalande M, Calciano MA (2007) Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci 64:947–960

    PubMed  CAS  Google Scholar 

  • Larijani M, Martin A (2007) Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol Cell Biol 27:8038–8048

    PubMed  CAS  Google Scholar 

  • Lee JT (2000) Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103:17–27

    PubMed  CAS  Google Scholar 

  • Lee JT, Lu N (1999) Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99:47–57

    PubMed  CAS  Google Scholar 

  • Lee MP, DeBaun MR, Mitsuya K et al (1999) Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci USA 96:5203–5208

    PubMed  CAS  Google Scholar 

  • Lehner B, Williams G, Campbell RD et al (2002) Antisense transcripts in the human genome. Trends Genet 18:63–65

    PubMed  CAS  Google Scholar 

  • Li YY, Qin L, Guo ZM et al (2006) In silico discovery of human natural antisense transcripts. BMC Bioinformatics 7:18

    PubMed  CAS  Google Scholar 

  • Li JT, Zhang Y, Kong L et al (2008) Trans-natural antisense transcripts including noncoding RNAs in 10 species: implications for expression regulation. Nucleic Acids Res 36:4833–4844

    PubMed  CAS  Google Scholar 

  • Luikenhuis S, Wutz A, Jaenisch R (2001) Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol Cell Biol 21:8512–8520

    PubMed  CAS  Google Scholar 

  • Lyle R, Watanabe D, te Vruchte D et al (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25:19–21

    PubMed  CAS  Google Scholar 

  • Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci USA 104:9667–9672

    PubMed  CAS  Google Scholar 

  • Makalowska I, Lin CF, Makalowski W (2005) Overlapping genes in vertebrate genomes. Comput Biol Chem 29:1–12

    PubMed  CAS  Google Scholar 

  • Maruyama R, Shipitsin M, Choudhury S et al (2010) Breast cancer special feature: altered antisense-to-sense transcript ratios in breast cancer. Proc Natl Acad Sci USA [Epub ahead of print]

    Google Scholar 

  • Matsui K, Nishizawa M, Ozaki T et al (2008) Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 47:686–697

    PubMed  CAS  Google Scholar 

  • Mattick JS (2009a) Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Ann NY Acad Sci 1178:29–46

    PubMed  CAS  Google Scholar 

  • Mattick JS (2009b) The genetic signatures of noncoding RNAs. PLoS Genet 5:e1000459

    PubMed  Google Scholar 

  • Mattick JS, Taft RJ, Faulkner GJ (2010) A global view of genomic information–moving beyond the gene and the master regulator. Trends Genet 26:21–28

    PubMed  CAS  Google Scholar 

  • Morris KV, Santoso S, Turner AM et al (2008) Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 4:e1000258

    PubMed  Google Scholar 

  • Neckers LM (1999) aHIF: the missing link between HIF-1 and VHL? J Natl Cancer Inst 91:106–107

    PubMed  CAS  Google Scholar 

  • Neeman Y, Dahary D, Levanon EY et al (2005) Is there any sense in antisense editing? Trends Genet 21:544–547

    PubMed  CAS  Google Scholar 

  • Nurmi EL, Amin T, Olson LM et al (2003) Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism. Mol Psychiatry 8(624–634):570

    CAS  Google Scholar 

  • Ohhata T, Hoki Y, Sasaki H et al (2008) Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135:227–235

    PubMed  CAS  Google Scholar 

  • Ohman M (2007) A-to-I editing challenger or ally to the microRNA process. Biochimie 89:1171–1176

    PubMed  CAS  Google Scholar 

  • Okada Y, Tashiro C, Numata K et al (2008) Comparative expression analysis uncovers novel features of endogenous antisense transcription. Hum Mol Genet 17:1631–1640

    PubMed  CAS  Google Scholar 

  • Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9:673–678

    PubMed  CAS  Google Scholar 

  • Okazaki Y, Furuno M, Kasukawa T et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573

    PubMed  Google Scholar 

  • Osato N, Suzuki Y, Ikeo K et al (2007) Transcriptional interferences in cis natural antisense transcripts of humans and mice. Genetics 176:1299–1306

    PubMed  CAS  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    PubMed  CAS  Google Scholar 

  • Pastori C, Magistri M, Napoli S et al (2010) Small RNA-directed transcriptional control: new insights into mechanisms and therapeutic applications. Cell Cycle 9:2353–2362

    PubMed  CAS  Google Scholar 

  • Perlot T, Li G, Alt FW (2008) Antisense transcripts from immunoglobulin heavy-chain locus V(D)J and switch regions. Proc Natl Acad Sci USA 105:3843–3848

    PubMed  CAS  Google Scholar 

  • Peters NT, Rohrbach JA, Zalewski BA et al (2003) RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA 9:698–710

    PubMed  CAS  Google Scholar 

  • Popov N, Gil J (2010) Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics 5:685–690

    PubMed  CAS  Google Scholar 

  • Preker P, Nielsen J, Kammler S et al (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322:1851–1854

    PubMed  CAS  Google Scholar 

  • Prescott EM, Proudfoot NJ (2002) Transcriptional collision between convergent genes in budding yeast. Proc Natl Acad Sci USA 99:8796–8801

    PubMed  CAS  Google Scholar 

  • Quere R, Manchon L, Lejeune M et al (2004) Mining SAGE data allows large-scale, sensitive screening of antisense transcript expression. Nucleic Acids Res 32:e163

    PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    PubMed  CAS  Google Scholar 

  • Rinn JL, Euskirchen G, Bertone P et al (2003) The transcriptional activity of human Chromosome 22. Genes Dev 17:529–540

    PubMed  CAS  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    PubMed  CAS  Google Scholar 

  • Roa S, Kuang FL, Scharff MD (2008) Does antisense make sense of AID targeting? Proc Natl Acad Sci USA 105:3661–3662

    PubMed  CAS  Google Scholar 

  • Ronai D, Iglesias-Ussel MD, Fan M et al (2007) Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. J Exp Med 204:181–190

    PubMed  CAS  Google Scholar 

  • Rosok O, Sioud M (2004) Systematic identification of sense-antisense transcripts in mammalian cells. Nat Biotechnol 22:104–108

    PubMed  CAS  Google Scholar 

  • Rosok O, Sioud M (2005) Systematic search for natural antisense transcripts in eukaryotes (review). Int J Mol Med 15:197–203

    PubMed  CAS  Google Scholar 

  • Rossignol F, Vache C, Clottes E (2002) Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 299:135–140

    PubMed  CAS  Google Scholar 

  • Rossignol F, de Laplanche E, Mounier R et al (2004) Natural antisense transcripts of HIF-1alpha are conserved in rodents. Gene 339:121–130

    PubMed  CAS  Google Scholar 

  • Rougeulle C, Heard E (2002) Antisense RNA in imprinting: spreading silence through Air. Trends Genet 18:434–437

    PubMed  CAS  Google Scholar 

  • Rougeulle C, Cardoso C, Fontes M et al (1998) An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet 19:15–16

    PubMed  CAS  Google Scholar 

  • Runte M, Huttenhofer A, Gross S et al (2001) The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 10:2687–2700

    PubMed  CAS  Google Scholar 

  • Sado T, Wang Z, Sasaki H et al (2001) Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128:1275–1286

    PubMed  CAS  Google Scholar 

  • Sanchez-Elsner T, Gou D, Kremmer E et al (2006) Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311:1118–1123

    PubMed  CAS  Google Scholar 

  • Sastry SS, Hoffman PL (1995) The influence of RNA and DNA template structures during transcript elongation by RNA polymerases. Biochem Biophys Res Commun 211:106–114

    PubMed  CAS  Google Scholar 

  • Scadden AD, Smith CW (1997) A ribonuclease specific for inosine-containing RNA: a potential role in antiviral defence? EMBO J 16:2140–2149

    PubMed  CAS  Google Scholar 

  • Scheele C, Petrovic N, Faghihi MA et al (2007) The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics 8:74

    PubMed  Google Scholar 

  • Schwartz JC, Younger ST, Nguyen NB et al (2008) Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol 15:842–848

    PubMed  CAS  Google Scholar 

  • Seila AC, Calabrese JM, Levine SS et al (2008) Divergent transcription from active promoters. Science 322:1849–1851

    PubMed  CAS  Google Scholar 

  • Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference–a crash course. Trends Genet 21(6):339–345

    PubMed  CAS  Google Scholar 

  • Shendure J, Church GM (2002) Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol 3:RESEARCH0044

    PubMed  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    PubMed  CAS  Google Scholar 

  • Sleutels F, Tjon G, Ludwig T et al (2003) Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air. EMBO J 22:3696–3704

    PubMed  CAS  Google Scholar 

  • Smilinich NJ, Day CD, Fitzpatrick GV et al (1999) A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci USA 96:8064–8069

    PubMed  CAS  Google Scholar 

  • St Laurent G 3rd, Wahlestedt C (2007) Noncoding RNAs: couplers of analog and digital information in nervous system function? Trends Neurosci 30:612–621

    PubMed  CAS  Google Scholar 

  • Stavropoulos N, Lu N, Lee JT (2001) A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc Natl Acad Sci USA 98:10232–10237

    PubMed  CAS  Google Scholar 

  • Sun M, Hurst LD, Carmichael GG et al (2005) Evidence for a preferential targeting of 3'-UTRs by cis-encoded natural antisense transcripts. Nucleic Acids Res 33:5533–5543

    PubMed  CAS  Google Scholar 

  • Taft RJ, Glazov EA, Cloonan N et al (2009) Tiny RNAs associated with transcription start sites in animals. Nat Genet 41:572–578

    PubMed  CAS  Google Scholar 

  • Tam OH, Aravin AA, Stein P et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    PubMed  CAS  Google Scholar 

  • Thakur N, Tiwari VK, Thomassin H et al (2004) An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 24:7855–7862

    PubMed  CAS  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529

    PubMed  CAS  Google Scholar 

  • Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    PubMed  CAS  Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D et al (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34:157–165

    PubMed  CAS  Google Scholar 

  • Uchida T, Rossignol F, Matthay MA et al (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem 279:14871–14878

    PubMed  CAS  Google Scholar 

  • Vallon-Christersson J, Staaf J, Kvist A et al (2007) Non-coding antisense transcription detected by conventional and single-stranded cDNA microarray. BMC Genomics 8:295

    PubMed  Google Scholar 

  • Vanhee-Brossollet C, Vaquero C (1998) Do natural antisense transcripts make sense in eukaryotes? Gene 211:1–9

    PubMed  CAS  Google Scholar 

  • Volk R, Koster M, Poting A et al (1989) An antisense transcript from the Xenopus laevis bFGF gene coding for an evolutionarily conserved 24 kd protein. EMBO J 8:2983–2988

    PubMed  CAS  Google Scholar 

  • Wahlestedt C (2006) Natural antisense and noncoding RNA transcripts as potential drug targets. Drug Discov Today 11:503–508

    PubMed  CAS  Google Scholar 

  • Watanabe T, Takeda A, Tsukiyama T et al (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20:1732–1743

    PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    PubMed  CAS  Google Scholar 

  • Wroe SF, Kelsey G, Skinner JA et al (2000) An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc Natl Acad Sci USA 97:3342–3346

    PubMed  CAS  Google Scholar 

  • Wutz A, Smrzka OW, Schweifer N et al (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–749

    PubMed  CAS  Google Scholar 

  • Xu Z, Wei W, Gagneur J et al (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–1037

    PubMed  CAS  Google Scholar 

  • Yamasaki K, Joh K, Ohta T et al (2003) Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum Mol Genet 12:837–847

    PubMed  CAS  Google Scholar 

  • Yang N, Kazazian HH Jr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13:763–771

    PubMed  CAS  Google Scholar 

  • Yap KL, Li S, Munoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674

    PubMed  CAS  Google Scholar 

  • Yelin R, Dahary D, Sorek R et al (2003) Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 21:379–386

    PubMed  CAS  Google Scholar 

  • Yu W, Gius D, Onyango P et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    PubMed  CAS  Google Scholar 

  • Zhang Y, Liu XS, Liu QR et al (2006) Genome-wide in silico identification and analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic Acids Res 34:3465–3475

    PubMed  CAS  Google Scholar 

  • Zhang Q, Zhang J, Moe OW et al (2008) Synergistic upregulation of erythropoietin receptor (EPO-R) expression by sense and antisense EPO-R transcripts in the canine lung. Proc Natl Acad Sci USA 105:7612–7617

    PubMed  CAS  Google Scholar 

  • Zuniga Mejia Borja A, Meijers C, Zeller R (1993) Expression of alternatively spliced bFGF first coding exons and antisense mRNAs during chicken embryogenesis. Dev Biol 157:110–118

    PubMed  CAS  Google Scholar 

  • Zwart R, Sleutels F, Wutz A et al (2001) Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev 15:2361–2366

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Magistri, M., Faghihi, M.A. (2012). Natural Antisense Transcripts Mediate Regulation of Gene Expression. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_10

Download citation

Publish with us

Policies and ethics