Skip to main content

Quantitative Measurements of Elastic Properties with Ultrasonic-Based AFM and Conventional Techniques

  • Chapter
  • First Online:
Acoustic Scanning Probe Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

A prime motivation for the original development of ultrasonic-based AFM methods was to enable measurements of elastic properties with nanoscale spatial resolution. In this chapter, we discuss the quantitative measurement of elastic modulus with ultrasonic-based AFM methods and compare it to measurement by more conventional or established techniques. First, we present the basic principles of modulus measurement with methods that involve contact resonance spectroscopy, such as atomic force acoustic microscopy (AFAM) and ultrasonic AFM (U-AFM). Fundamental concepts of modulus measurement with more established approaches, especially instrumented (nano-) indentation (NI) and surface acoustic wave spectroscopy (SAWS), are then discussed. We consider the relative strengths and limitations of various approaches, for example measurement accuracy, spatial resolution, and applicability to different materials. Example results for specific material systems are given with an emphasis on studies involving direct intercomparison of different techniques. Finally, current research in this area and opportunities for future work are described.

Contribution of NIST, an agency of the US government; not subject to copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Commercial equipment and materials are identified only in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best for the purpose.

References

  1. U. Rabe, W. Arnold, Appl. Phys. Lett. 64, 1493 (1994)

    Article  ADS  Google Scholar 

  2. U. Rabe, Atomic force acoustic microscopy, in Applied Scanning Probe Methods Vol. II, ed. by B. Bhushan, H. Fuchs (Springer, Berlin, 2006), Chap. 2, p. 37

    Google Scholar 

  3. K. Yamanaka, S. Nakano, Jpn. J. Appl. Phys. 35, 3787 (1996)

    Article  ADS  Google Scholar 

  4. K. Yamanaka, K. Kobari, T. Tsuji, Jpn. J. Appl. Phys. 47, 6070 (2008)

    Article  ADS  Google Scholar 

  5. D. C. Hurley, Contact resonance force microscopy techniques for nanomechanical measurements, in Applied Scanning Probe Methods Vol. XI, ed. by B. Bhushan, H. Fuchs (Springer, Berlin, 2009), Chap. 5, p. 97

    Google Scholar 

  6. http://www.ntmdt.com/page/afam. Accessed May 2012

  7. B.J. Rodriguez, C. Callahan, S.V. Kalinin, R. Proksch, Nanotechnology 18, 475504 (2007). http://www.asylumresearch.com/Applications/BimodalDualAC/BimodalDualAC.shtml. Accessed May 2012

  8. S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, Nanotechnology 18, 435503 (2007), http://www.asylumresearch.com/Applications/BandExcitation/BandExcitation.shtml. Accessed May 2012

  9. T. Tsuji, K. Kobari, S. Ide, K. Yamanaka, Rev. Sci. Instr. 78, 103703 (2007)

    Article  ADS  Google Scholar 

  10. M. Prasad, M. Kopycinska, U. Rabe, W. Arnold, Geophys. Res. Lett. 29, 13 (2002)

    Article  Google Scholar 

  11. S.S. Nair, S. Wang, D.C. Hurley, Composites A 41, 624 (2010)

    Article  Google Scholar 

  12. R. Arinero, G. Lévêque, Rev. Sci. Instr. 74, 104 (2003)

    Article  ADS  Google Scholar 

  13. D.C. Hurley, K. Shen, N.M. Jennett, J.A. Turner, J. Appl. Phys. 94, 2347 (2003)

    Article  ADS  Google Scholar 

  14. F.J. Espinoza Beltrán, J. Muñoz-Saldaña, D. Torres-Torres, R. Torres-Martínez, G.A. Schneider, J. Mater. Res. 21, 3072 (2006)

    Article  ADS  Google Scholar 

  15. E.P. Papadakis, The measurement of ultrasonic velocity, in Physical Acoustics Vol. XIX, ed. by R.N. Thurston, A.D. Pierce (Academic Press, San Diego, 1990), Chap. 2, p. 81

    Google Scholar 

  16. J.B. Pethica, R. Hutchings, W.C. Oliver, Philos. Mag. A 48, 593 (1983)

    Article  ADS  Google Scholar 

  17. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)

    Article  ADS  Google Scholar 

  18. U. Rabe, S. Amelio, M. Kopycinska, S. Hirsekorn, M. Kempf, M. Göken, W. Arnold, Surf. Interf. Anal. 33, 65 (2002)

    Article  Google Scholar 

  19. W. Price, G. Stan, Rev. Sci. Instr. 77, 103707 (2006)

    Article  ADS  Google Scholar 

  20. J.J. Vlassak, W.D. Nix, J. Mech. Phys. Solids 42, 1223 (1994)

    Article  ADS  Google Scholar 

  21. M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Ultramicroscopy 106, 466 (2006)

    Article  Google Scholar 

  22. T. Chudoba, N.M. Jennett, J. Phys. D: Appl. Phys. 41, 215407 (2008)

    Article  ADS  Google Scholar 

  23. S.A. Syed Asif, K.J. Wahl, R.J. Colton, Rev. Sci. Instrum. 70, 2408 (1999)

    Article  ADS  Google Scholar 

  24. X. Li, B. Bhushan, Mater. Charact. 48, 11 (2002)

    Article  Google Scholar 

  25. M. Oyen, R. Cook, J. Mater. Res. 18, 139 (2003)

    Article  ADS  Google Scholar 

  26. D. Schneider, T. Schwarz, B. Schultrich, Thin Solid Films 219, 92 (1992)

    Article  ADS  Google Scholar 

  27. A. Lomonosov, A.P. Mayer, P. Hess, Laser controlled surface acoustic waves, in Handbook of Elastic Properties of Solids, Liquids, and Gases Vol. 1, ed. by M. Levy, H.E. Bass, R.R. Stern (Academic Press, New York, 2001), Chap. 7, p. 137

    Google Scholar 

  28. D.C. Hurley, V.K. Tewary, A.J. Richards, Meas. Sci. Technol. 12, 1486 (2001)

    Article  ADS  Google Scholar 

  29. A.G. Every, Meas. Sci. Technol. 13, R21 (2002)

    Article  ADS  Google Scholar 

  30. http://www.ccl.fraunhofer.org/download/LA_Wave.pdf. Accessed May 2012

  31. G.W. Farnell, E.L. Adler, Elastic wave propagation in thin layers, in Physical Acoustics Vol. 9, ed. by W.P. Mason, R.N. Thurston (Academic Press, San Diego, 1972), Chap. 2, pp. 35–127

    Google Scholar 

  32. F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, O.V. Kolosov, Phil. Mag. A 80, 2299 (2000)

    Article  ADS  Google Scholar 

  33. F. Dinelli, S.K. Biswas, G.A.D. Briggs, O.V. Kolosov, Phys. Rev. B 61, 13995 (2000)

    Google Scholar 

  34. B.D. Huey, Annu. Rev. Mater. Res. 37, 351 (2007)

    Article  ADS  Google Scholar 

  35. D. Passeri, A. Bettucci, M. Rossi, Anal. Bioanal. Chem. 396, 2769 (2010)

    Article  Google Scholar 

  36. L. Muthuswami, R.E. Geer, Appl. Phys. Lett. 84, 5082 (2004)

    Article  ADS  Google Scholar 

  37. Y. Zheng, R.E. Geer, K. Dovidenko, M. Kopycinska-Müller, D.C. Hurley, J. Appl. Phys. 100, 124308 (2006)

    Article  ADS  Google Scholar 

  38. L. Muthaswami, Y. Zheng, R. Vajtai, G. Shehkawat, P. Ajayan, R.E. Geer, Nano Lett. 7, 3891 (2007)

    Article  ADS  Google Scholar 

  39. T. Hesjedal, Rep. Prog. Phys. 73, 016102 (2010)

    Article  ADS  Google Scholar 

  40. B. Cappella, G. Dietler, Surf. Sci. Rep. 34, 1 (1999)

    Article  Google Scholar 

  41. H.-J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep. 59, 1 (2005)

    Article  ADS  Google Scholar 

  42. B. Pittenger, N. Erina, C. Su, Quantitative mechanical property mapping at the nanoscale with PeakForce QNM, http://www.bruker-axs.com/application_notes_afm.html. Accessed May 2012

  43. J.D. Achenbach, J.O. Kim, Y.-C. Lee, Measuring thin-film elastic constants by line-focus acoustic microscopy, in Advances in Acoustic Microscopy Vol. 1, ed. by G.A.D. Briggs (Plenum, New York, 1995), Chap. 5, pp. 153–208

    Google Scholar 

  44. G.A.D. Briggs, O.V. Kolosov, Acoustic Microscopy, 2nd edn. (Oxford University Press, New York, 2010)

    Google Scholar 

  45. P. Mutti, C.E. Bottani, G. Ghislotti, M. Benghi, G.A.D. Briggs, J.R. Sandercock, Surface brillouin scattering—extending surface wave measurements to 20 GHz, in Advances in Acoustic Microscopy, ed. by G.A.D. Briggs, Vol. 1 (Plenum, New York, 1995), Chap. 7, pp. 249–300

    Google Scholar 

  46. J.A. Rogers, A.A. Maznev, M.J. Banet, K.A. Nelson, Annu. Rev. Mater. Sci. 30, 117 (2000)

    Article  ADS  Google Scholar 

  47. G.A. Antonelli, B. Perrin, B.C. Daly, D.G. Cahill, Characterization of mechanical and thermal properties using ultrafast optical metrology. MRS Bull. 31, 607 (2006)

    Article  Google Scholar 

  48. E. Kester, U. Rabe, L. Presmanes, P. Tailhades, W. Arnold, J. Phys. Chem. Solids 61, 1275 (2000)

    Article  ADS  Google Scholar 

  49. D.C. Hurley, Measuring mechanical properties on the nanoscale with contact resonance force microscopy methods, in Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy, ed. by S. Kalinin, A. Gruverman (Springer, Berlin, 2011)

    Google Scholar 

  50. G. Stan, C.V. Ciobanu, P.M. Parthangal, R.F. Cook, Nano Lett. 7, 3691 (2007)

    Article  ADS  Google Scholar 

  51. G. Stan, C.V. Ciobanu, T.P. Thayer, G.T. Wang, J.R. Creighton, K.P. Purushotham, L.A. Bendersky, R.F. Cook, Nanotechnology 20, 035706 (2009)

    Article  Google Scholar 

  52. T. Tsuji, S. Saito, K. Fukuda, K. Yamanaka, H. Ogiso, J. Akedo, K. Kawakami, Appl. Phys. Lett. 87, 071909 (2005)

    Article  ADS  Google Scholar 

  53. D. Passeri, M. Rossi, A. Alippi, A. Bettucci, M.L. Terranova, E. Tamburri, F. Toschi, Physica E 40, 2419 (2008)

    Article  ADS  Google Scholar 

  54. M. Preghenella, A. Pegoretti, C. Migliaresi, Polym. Test. 25, 443 (2006)

    Article  Google Scholar 

  55. D.C. Hurley, M. Kopycinska-Müller, A.B. Kos, JOM 59, 23 (2007)

    Article  ADS  Google Scholar 

  56. D.C. Hurley, R.H. Geiss, M. Kopycinska-Müller, J. Müller, D.T. Read, J.E. Wright, N.M. Jennett, A.S. Maxwell, J. Mater. Res. 20, 1186 (2005)

    Article  ADS  Google Scholar 

  57. G. Stan, S.W. King, R.F. Cook, J. Mater. Res. 24, 2960 (2009)

    Article  ADS  Google Scholar 

  58. M. Kopycinska-Müller, A. Caron, S. Hirsekorn, U. Rabe, H. Natter, R. Hempelmann, R. Birringer, W. Arnold, Z. Phys, Chem. 222, 471 (2008)

    Google Scholar 

  59. P. Attard, J. Phys.: Condens. Matter 19, 473201 (2007)

    Google Scholar 

  60. P.A. Yuya, D.C. Hurley, J.A. Turner, J. Appl. Phys. 104, 074916 (2008)

    Article  ADS  Google Scholar 

  61. J.P. Killgore, D.G. Yablon, A.H. Tsou, A. Gannepalli, P.A. Yuya, J.A. Turner, R. Proksch, D.C. Hurley, Langmuir 27, 13983 (2011)

    Google Scholar 

Download references

Acknowledgments

Many current and former NIST coworkers contributed to this work, including S. Campbell, C. Flannery, R. Geiss, J. Killgore, M. Kopycinska-Müller, A. Kos, E. Langlois, P. Rice, D. Smith, C. Stafford, and G. Stan. I value many interactions over the years with researchers from other institutes, especially with J. Turner and students (Univ. Nebraska-Lincoln), and W. Arnold, U. Rabe, and S. Hirsekorn (Fraunhofer Institute for Nondestructive Testing IZFP, Saarbrücken, Germany). I also value collaborations and discussions with R. Geer and students (State University of New York at Albany), B. Huey (Univ. Connecticut-Storrs), N. Jennett and coworkers (National Physical Laboratory, Teddington, UK), T. Murray (Univ. Colorado-Boulder), and G. Pharr (Univ. Tennessee-Knoxville).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Hurley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hurley, D.C. (2013). Quantitative Measurements of Elastic Properties with Ultrasonic-Based AFM and Conventional Techniques. In: Marinello, F., Passeri, D., Savio, E. (eds) Acoustic Scanning Probe Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27494-7_12

Download citation

Publish with us

Policies and ethics