Skip to main content

Abstract

Among linear DR methods, principal component analysis (PCA) perhaps is the most important one. In linear DR, the dissimilarity of two points in a data set is defined by the Euclidean distance between them, and correspondingly, the similarity is described by their inner product. Linear DR methods adopt the global neighborhood system: the neighbors of a point in the data set consist of all of other points. Let the original data set be H= {x 1 ··· x n ⊂ ℝD and the DR data set of H be a d-dimensional set Y. Under the Euclidean measure, PCA finds a linear projection T: ℝD → ℝd so that the DR data Y = T(H) maximize the data energy. PCA is widely used in many applications. The present chapter is organized as follows. In Section 5.1, we discuss the description of PCA. In Section 5.2, we present the PCA algorithms. Some real-world applications of PCA are introduced in Section 5.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2(6), 559–572 (1901).

    Google Scholar 

  2. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics. Springer-Verlag, Berlin (1986).

    Google Scholar 

  3. Rao, C., Rao, M.: Matrix Algebra and Its Applications to Statistics and Econometric. World Scientific, Singapore (1998).

    Google Scholar 

  4. Lehoucq, R., Sorensen, D.: Deflation techniques for an implicitly re-started arnoldi iteration. SIAM J. Matrix Analysis and Applications 17, 789–821 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM Publisher (1993).

    Google Scholar 

  6. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of AppliedMathematics 9, 17–29 (1951).

    MathSciNet  MATH  Google Scholar 

  7. Lehoucq, R., Sorensen, D., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM Publications, Philadelphia (1998).

    Google Scholar 

  8. Sorensen, D.: Implicit application of polynomial filters in a k-step arnoldi method. SIAM J. Matrix Analysis and Applications 13, 357–385 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. Roweis, S.: EM algorithms for PCA and SPCA. In: anips, vol. 10, pp. 626–632 (1998).

    Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B 39(1), 1–38 (1977).

    MathSciNet  MATH  Google Scholar 

  11. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. TPAMI 7(19), 711–720 (1997).

    Article  Google Scholar 

  12. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. TPAMI 6(23), 643–660 (2001).

    Article  Google Scholar 

  13. Wang, W., Song, J., Yang, Z., Chi, Z.: Wavelet-based illumination compensation for face recognition using eigenface method. In: Proceedings of Intelligent Control and Automation. Dalian, China (2006).

    Google Scholar 

  14. Chen, T., Zhou, X.S., Comaniciu, D., Huang, T.: Total variation models for variable lighting face recognition. TPAMI 9(28), 1519–1524 (2006).

    Article  Google Scholar 

  15. Wang, H.T., Li, S.Z., Wang, Y.S.: Face recognition under varying lighting conditions using self quotient image. In: Automatic Face and Gesture Recognition, International Conference on FGR, pp. 819–824 (2004).

    Google Scholar 

  16. Basri, R., Jacobs, D.: Photometric stereo with general, unknown lighting. In: IEEE Conference on CVPR, 374–381 (2001).

    Google Scholar 

  17. Horn, B.: The Psychology of Computer Vision, chap. 4. Obtaining Shape from Shading Information and chap 6. Shape from Shading, pp. 115–155. McGraw-Hill, New York (1975).

    Google Scholar 

  18. Xie, X.D., Lam, K.: Face recognition under varying illumination based on a 2D face shape model. Journal of Pattern Recognition 2(38), 221–230 (2005).

    Google Scholar 

  19. Hu, Y.K., Wang, Z.: A low-dimensional illumination space representation of human faces for arbitrary lighting conditions. In: Proceedings of ICPR, pp. 1147–1150. Hong Kong (2006).

    Google Scholar 

  20. Ramamoorthi, R.: Analytic PCA construction for theoretical analysis of lighting variability in images of a lambertian object. TPAMI 10(24), 1322–1333 (2002).

    Article  Google Scholar 

  21. Wang, H.T., Li, S.Z., Wang, Y.: Generalized quotient image. In: Proceeding of CVPR (2004).

    Google Scholar 

  22. Xie, X., Zheng, W.S., Lai, J., Yuen, P.C.: Face illumination normalization on large and small scale features. In: IEEE Coference on CVPR (2008).

    Google Scholar 

  23. Xie, X., Lai, J., Zheng, W.S.: Extraction of illumination invariant facial features from a single image using nonsubsampled contourlet transform. Pattern Recognition 43(12), 4177–4189 (2010).

    Article  MATH  Google Scholar 

  24. Xie, X., Zheng, W.S., Lai, J., Yuen, P.C., Suen, C.Y.: Normalization of face illumination based on large-and small-scale features. IEEE Trans. on Image Processing (2010). Accepted.

    Google Scholar 

  25. Zheng, W.S., Lai, J., Yuen, P.C.: Penalized pre-image learning in kernel principal component analysis. IEEE Trans. on Neural Networks 21(4), 551–570 (2010).

    Article  Google Scholar 

  26. Turk, M., Pentland, A.: Eigenfaces for recognition. The Journal of Cognitive Neuroscience 3(1), 71–86 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J. (2012). Principal Component Analysis. In: Geometric Structure of High-Dimensional Data and Dimensionality Reduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27497-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27497-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27496-1

  • Online ISBN: 978-3-642-27497-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics