Skip to main content

Probing Photoluminescence Dynamics in Colloidal Semiconductor Nanocrystal/Fullerene Heterodimers with Single Molecule Spectroscopy

  • Chapter
  • First Online:
UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization
  • 5148 Accesses

Abstract

Single molecule optical spectroscopy (SMS) allows for the characterization of photoluminescence intensity and lifetime of a isolated colloidal semiconductor nanocrystal, which provide valuable information about its intrinsic structural defects and interactions with the external nanoenvironment. In this chapter, we describe the application of SMS for the study of photoluminescence blinking and photoinduced charge transfer in colloidal semiconductor nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  ADS  Google Scholar 

  2. Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  ADS  Google Scholar 

  3. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: Recent progress and present challenges. Adv Mater 18(15):1953–1964

    Article  Google Scholar 

  4. Klimov VI et al (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290(5490):314–317

    Article  ADS  Google Scholar 

  5. Brumer M et al (2006) Nanocrystals of PbSe core, PbSe/PbS, and PbSe/PbSexS1-x core/shell as saturable absorbers in passively Q-switched near-infrared lasers. Appl Opt 45(28):7488–7497

    Article  ADS  Google Scholar 

  6. Vezenov DV et al (2005) A low-threshold, high-efficiency microfluidic waveguide laser. J Am Chem Soc 127(25):8952–8953

    Article  Google Scholar 

  7. Klimov VI et al (2007) Single-exciton optical gain in semiconductor nanocrystals. Nature 447(7143):441–446

    Article  ADS  Google Scholar 

  8. Darugar Q, Qian W, El-Sayed MA (2006) Observation of optical gain in solutions of CdS quantum dots at room temperature in the blue region. Appl Phys Lett 88(26)

    Google Scholar 

  9. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488):354–357

    Article  ADS  Google Scholar 

  10. Dabbousi BO et al (1995) Electroluminescence from CdSe quantum-dot polymer composites. Appl Phys Lett 66(11):1316–1318

    Article  ADS  Google Scholar 

  11. Choudhury KR, Song DW, So F (2010) Efficient solution-processed hybrid polymer-nanocrystal near infrared light-emitting devices. Org Electron 11(1):23–28

    Article  Google Scholar 

  12. Nozik AJ (2002) Quantum dot solar cells. Physica E 14(1–2):115–120

    Article  ADS  Google Scholar 

  13. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    Article  ADS  Google Scholar 

  14. Gur I et al (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747):462–465

    Article  ADS  Google Scholar 

  15. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse Cde (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  Google Scholar 

  16. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Article  Google Scholar 

  17. Dabbousi BO et al (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  Google Scholar 

  18. Nirmal M et al (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383(6603):802–804

    Article  ADS  Google Scholar 

  19. Frantsuzov P et al (2008) Universal emission intermittency in quantum dots, nanorods and nanowires. Nat Phys 4(7):519–522

    Article  Google Scholar 

  20. Brown P, Kamat PV (2008) Quantum dot solar cells. Electrophoretic deposition of CdSe-C-60 composite films and capture of photogenerated electrons with nC(60) cluster shell. J Am Chem Soc 130(28):8890–8891

    Article  Google Scholar 

  21. Xu ZH, Cotlet M (2011) Quantum dot-bridge-fullerene heterodimers with controlled photoinduced electron transfer. Angew Chem Int Ed 50(27):6079–6083

    Article  Google Scholar 

  22. Xu Z, Cotlet M (2011) Photoluminescence blinking dynamics of colloidal quantum dots in the presence of controlled external electron traps. Small 8(2):253–258

    Article  Google Scholar 

  23. Hirsch A et al (1994) Regiochemistry of multiple additions to the fullerene core – synthesis of a T-H-symmetrical hexakisadduct of C-60 with bis(ethoxycarbonyl)methylene. J Am Chem Soc 116(20):9385–9386

    Article  Google Scholar 

  24. Anderson AS et al (2008) Functional PEG-modified thin films for biological detection. Langmuir 24(5):2240–2247

    Article  Google Scholar 

  25. Cotlet M et al (2004) Probing conformational dynamics in single donor-acceptor synthetic molecules by means of photoinduced reversible electron transfer. Proc Natl Acad Sci USA 101(40):14343–14348

    Article  ADS  Google Scholar 

  26. Weston KD et al (2002) Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons. Anal Chem 74(20):5342–5349

    Article  Google Scholar 

  27. Yang H, Xie XS (2002) Probing single-molecule dynamics photon by photon. J Chem Phys 117(24):10965–10979

    Article  ADS  Google Scholar 

  28. Pichler K et al (1991) Photophysical properties of solid films of fullerene C-60. J Phys Condens Matter 3(47):9259–9270

    Article  ADS  Google Scholar 

  29. Greenham NC, Peng XG, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54(24):17628–17637

    Article  ADS  Google Scholar 

  30. Liu DF et al (2007) Chemical conjugation of fullerene C-60 to CdSe nanocrystals via dithiocarbamate ligands. J Phys Chem C 111(48):17713–17719

    Article  Google Scholar 

  31. Ravindran S et al (2003) Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications. Nano Lett 3(4):447–453

    Article  ADS  Google Scholar 

  32. Robel I, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129(14):4136–4137

    Article  Google Scholar 

  33. Hohng S, Ha T (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 126(5):1324–1325

    Article  Google Scholar 

  34. Fomenko V, Nesbitt DJ (2008) Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Lett 8(1):287–293

    Article  ADS  Google Scholar 

  35. Chen Y et al (2008) “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J Am Chem Soc 130(15):5026–5027

    Article  Google Scholar 

  36. Mahler B et al (2008) Towards non-blinking colloidal quantum dots. Nat Mater 7(8):659–664

    Article  ADS  Google Scholar 

  37. Wang XY et al (2009) Non-blinking semiconductor nanocrystals. Nature 459(7247):686–689

    Article  ADS  Google Scholar 

  38. Efros AL, Rosen M (1997) Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys Rev Lett 78(6):1110–1113

    Article  ADS  Google Scholar 

  39. Kuno M et al (2001) “On”/“off” fluorescence intermittency of single semiconductor quantum dots. J Chem Phys 115(2):1028–1040

    Article  MathSciNet  ADS  Google Scholar 

  40. Shimizu KT et al (2001) Blinking statistics in single semiconductor nanocrystal quantum dots. Phys Rev B 6320(20):205316

    Article  ADS  Google Scholar 

  41. Verberk R, van Oijen AM, Orrit M (2002) Simple model for the power-law blinking of single semiconductor nanocrystals. Phys Rev B 66(23):233203

    Article  ADS  Google Scholar 

  42. Tang J, Marcus RA (2005) Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Phys Rev Lett 95(10):107401

    Article  ADS  Google Scholar 

  43. Pelton M et al (2007) Evidence for a diffusion-controlled mechanism for fluorescence blinking of colloidal quantum dots. Proc Natl Acad Sci USA 104(36):14249–14254

    Article  ADS  Google Scholar 

  44. Margolin G et al (2006) Power-law blinking quantum dots: stochastic and physical models. Fractals Diffus Relax Disord Complex Syst Part A 133:327–356

    Google Scholar 

  45. Jha PP, Guyot-Sionnest P (2009) Trion decay in colloidal quantum dots. ACS Nano 3(4):1011–1015

    Article  Google Scholar 

  46. Zhao J et al (2010) Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. Phys Rev Lett 104(15):157403

    Article  ADS  Google Scholar 

  47. Rosen S, Schwartz O, Oron D (2010) Transient fluorescence of the off state in blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by auger recombination. Phys Rev Lett 104(15):157404

    Article  ADS  Google Scholar 

  48. Frantsuzov PA, Marcus RA (2005) Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys Rev B 72(15):155321

    Article  ADS  Google Scholar 

  49. Wang XY et al (2003) Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett 3(8):1103–1106

    Article  ADS  Google Scholar 

  50. Knappenberger KL et al (2008) Excitation-wavelength dependence of fluorescence intermittency in CdSe nanorods. ACS Nano 2(10):2143–2153

    Article  Google Scholar 

  51. Wang S et al (2006) Fluorescence blinking statistics from CdSe core and core/shell nanorods. J Phys Chem B 110(46):23221–23227

    Article  Google Scholar 

  52. Antelman J et al (2009) Suppression of quantum dot blinking in DTT-doped polymer films. J Phys Chem C 113(27):11541–11545

    Article  Google Scholar 

  53. Biebersdorf A et al (2006) Semiconductor nanocrystals photosensitize C-60 crystals. Nano Lett 6(7):1559–1563

    Article  ADS  Google Scholar 

  54. Guldi DM et al (2004) Versatile organic (fullerene) – inorganic (CdTe nanoparticle) nanoensembles. J Am Chem Soc 126(44):14340–14341

    Article  Google Scholar 

  55. Schlegel G et al (2002) Fluorescence decay time of single semiconductor nanocrystals. Phys Rev Lett 88(13):137401

    Article  ADS  Google Scholar 

  56. Zhang K et al (2006) Continuous distribution of emission states from single CdSe/ZnS quantum dots. Nano Lett 6(4):843–847

    Article  ADS  Google Scholar 

  57. Issac A, Jin SY, Lian TQ (2008) Intermittent electron transfer activity from single CdSe/ZnS quantum dots. J Am Chem Soc 130(34):11280–11281

    Article  Google Scholar 

  58. Song NH et al (2011) Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules. ACS Nano 5(1):613–621

    Article  Google Scholar 

  59. Jin SY, Lian TQ (2009) Electron transfer dynamics from single CdSe/ZnS quantum dots to TiO2 nanoparticles. Nano Lett 9(6):2448–2454

    Article  ADS  Google Scholar 

  60. Biju V et al (2004) Intermittent single-molecule interfacial electron transfer dynamics. J Am Chem Soc 126(30):9374–9381

    Article  Google Scholar 

  61. Wang YM et al (2009) Probing single-molecule interfacial electron transfer dynamics of porphyrin on TiO2 nanoparticles. J Am Chem Soc 131(4):1479–1487

    Article  Google Scholar 

  62. Cotlet M et al (2004) Probing the influence O-2 on photoinduced reversible electron transfer in perylenediimide-triphenylamine-based dendrimers by single-molecule spectroscopy. Angew Chem Int Ed 43(45):6116–6120

    Article  Google Scholar 

  63. Bell TDM et al (2005) Electron transfer at the single-molecule level in a triphenylamine-perylene imide molecule. Chemphyschem 6(5):942–948

    Article  Google Scholar 

  64. Neuhauser RG et al (2000) Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Phys Rev Lett 85(15):3301–3304

    Article  ADS  Google Scholar 

  65. Davis WB, Ratner MA, Wasielewski MR (2001) Conformational gating of long distance electron transfer through wire-like bridges in donor-bridge-acceptor molecules. J Am Chem Soc 123(32):7877–7886

    Article  Google Scholar 

  66. Closs GL, Miller JR (1988) Intramolecular long-distance electron-transfer in organic-molecules. Science 240(4851):440–447

    Article  ADS  Google Scholar 

  67. Kuno M et al (2000) Nonexponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. J Chem Phys 112(7):3117–3120

    Article  ADS  Google Scholar 

  68. Knappenberger KL et al (2007) Expitation wavelength dependence of fluorescence intermittency in CdSe/ZnS core/shell quantum’ dots. Nano Lett 7(12):3869–3874

    Article  ADS  Google Scholar 

  69. Peterson JJ, Nesbitt DJ (2009) Modified power law behavior in quantum dot blinking: a novel role for biexcitons and auger ionization. Nano Lett 9(1):338–345

    Article  ADS  Google Scholar 

  70. Tang J, Marcus RA (2005) Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. J Chem Phys 123(5):054704

    Article  ADS  Google Scholar 

  71. Cui SC et al (2008) Interfacial electron transfer dynamics in a single CdTe quantum dot-pyromellitimide conjugate. J Phys Chem C 112(49):19625–19634

    Article  Google Scholar 

  72. Marcus RA (1993) Electron-transfer reactions in chemistry – theory and experiment (Nobel lecture). Angew Chem Int Ed Engl 32(8):1111–1121

    Article  Google Scholar 

  73. Wu XY, Bell TDM, Yeow EKL (2009) Electron transport in the long-range charge-recombination dynamics of single encapsulated dye molecules on TiO2 nanoparticle films. Angew Chem Int Ed 48(40):7379–7382

    Article  Google Scholar 

  74. Hamada M et al (2010) Blinking suppression in CdSe/ZnS single quantum dots by TiO2 nanoparticles. ACS Nano 4(8):4445–4454

    Article  Google Scholar 

  75. Tang J (2008) The effects of anomalous diffusion on power-law blinking statistics of CdSe nanorods. J Chem Phys 129(8):084709

    Article  ADS  Google Scholar 

  76. Guo LJ, Wang YM, Lu HP (2010) Combined single-molecule photon-stamping spectroscopy and femtosecond transient absorption spectroscopy studies of interfacial electron transfer dynamics. J Am Chem Soc 132(6):1999–2004

    Article  Google Scholar 

  77. Koberling F, Mews A, Basche T (2001) Oxygen-induced blinking of single CdSe nanocrystals. Adv Mater 13(9):672–676

    Article  Google Scholar 

  78. Yang H et al (2003) Protein conformational dynamics probed by single-molecule electron transfer. Science 302(5643):262–266

    Article  ADS  Google Scholar 

  79. Sauer M (2003) Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angew Chem Int Ed 42(16):1790–1793

    Article  Google Scholar 

  80. Holman MW et al (2004) Studying and switching electron transfer: from the ensemble to the single molecule. J Am Chem Soc 126(49):16126–16133

    Article  Google Scholar 

  81. Huang J et al (2008) Photoinduced ultrafast electron transfer from CdSe quantum dots to re-bipyridyl complexes. J Am Chem Soc 130(17):5632–5633

    Article  Google Scholar 

  82. Verberk R, van Oijen AM, Orrit M (2002) Simple model for the power-law blinking of single semiconductor nanocrystals. Phys Rev B 66(23):233202

    Article  ADS  Google Scholar 

  83. Marshall LF et al (2010) Extracting spectral dynamics from single chromophores in solution. Phys Rev Lett 105(5):053005

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. H.L. Wang from Los Alamos National Laboratory in New Mexico for providing the fullerene compound and our colleagues from Brookhaven National Laboratory, Dr. M. Sfeir for helping with transient absorption experiments and Drs. M. Hybertsen and Q. Wu for helpful discussions and suggestions in connection with some of the data reported here. We also thank the Office of Science of the United States Department of Energy for funding this research under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Cotlet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, Z., Cotlet, M. (2013). Probing Photoluminescence Dynamics in Colloidal Semiconductor Nanocrystal/Fullerene Heterodimers with Single Molecule Spectroscopy. In: Kumar, C. (eds) UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27594-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27594-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27593-7

  • Online ISBN: 978-3-642-27594-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics