Skip to main content

Biomechanical Properties of Facial Cartilage Grafts

  • Chapter
  • First Online:
Advanced Aesthetic Rhinoplasty

Abstract

The cartilage framework of the nose plays an important role in the mechanical support of shape and airway patency. Articular cartilage is a weight-bearing and stress-tolerant tissue capable of sustaining high-impact loads with prolonged duty cycles, while facial cartilage serves primarily as structural support for the airway and does not undergo repeated high stress and strain deformations, but responds to small static loads which act over prolonged time frames. The authors discuss the triphasic theory as the most comprehensive model for cartilage mechanical behavior, mechanical properties of native facial cartilage and autologous grafts, and estimation of threshold mechanical stability

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mow VC, Guo XE (2002) Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng 4:175–209

    Article  PubMed  CAS  Google Scholar 

  2. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113(3):245–258

    Article  PubMed  CAS  Google Scholar 

  3. Homicz MR, McGowan KB, Lottman LM, Beh G, Sah RL, Watson D (2003) A compositional analysis of human nasal septal cartilage. Arch Facial Plast Surg 5(1):53–58

    Article  PubMed  Google Scholar 

  4. Hunziker EB (1992) Articular cartilage structure in humans and experimental animals. In: Kuettner K (ed) Articular cartilage and osteoarthritis. Raven Press, New York, pp 183–199

    Google Scholar 

  5. Stockwell RA (1971) The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 109(Pt 3):411–421

    PubMed  CAS  Google Scholar 

  6. Holden PK, Liaw LH, Wong BJ (2008) Human nasal cartilage ultrastructure: characteristics and comparison using scanning electron microscopy. Laryngoscope 118(7):1153–1156

    Article  PubMed  Google Scholar 

  7. Conderman C, Kinzinger M, Manuel C, Protsenko Dmitri, Wong B (2012) Mechanical Analysis of Cartilage Graft Reinforced with PDS Plate. Laryngoscope

    Google Scholar 

  8. Grellmann W, Berghaus A, Haberland EJ, Jamali Y, Holweg K, Reincke K, Bierögel C (2006) Determination of strength and deformation behavior of human cartilage for the definition of significant parameters. J Biomed Mater Res A 78(1):168–174

    Article  PubMed  CAS  Google Scholar 

  9. Richmon JD, Sage A, Van Wong W, Chen AC, Sah RL, Watson D (2006) Compressive biomechanical properties of human nasal septal cartilage. Am J Rhinol 20(5):496–501

    Article  PubMed  Google Scholar 

  10. Richmon JD, Sage AB, Wong VW, Chen AC, Pan C, Sah RL, Watson D (2005) Tensile biomechanical properties of human nasal septal cartilage. Am J Rhinol 19(6):617–622

    PubMed  Google Scholar 

  11. Roy R, Kohles SS, Zaporojan V, Peretti GM, Randolph MA, Xu J, Bonassar LJ (2004) Analysis of bending behavior of native and engineered auricular and costal cartilage. J Biomed Mater Res A 68(4):597–602

    Article  PubMed  Google Scholar 

  12. Vasudeva N (1979) Viscoelastic properties of human costal cartilage, M.S. thesis, University of California, Los Angels

    Google Scholar 

  13. Gillies HD (1920) Plastic surgery of the face. Oxford University Press, London

    Google Scholar 

  14. Fry HJ (1966) Interlocked stresses in human nasal septal cartilage. Br J Plast Surg 19(3):276–278

    Article  PubMed  CAS  Google Scholar 

  15. Fry H (1967) Cartilage and cartilage grafts: the basic properties of the tissue and the components responsible for them. Plast Reconstr Surg 40(5):526–539

    PubMed  CAS  Google Scholar 

  16. Gibson T, Davis WB (1958) The distortion of autogenous cartilage grafts: its cause and prevention. Br J Plast Surg 10:257–274

    Article  Google Scholar 

  17. Foulad A, Manuel C, Wong BJ (2011) Practical device for precise cutting of costal cartilage grafts to uniform thickness. Arch Facial Plast Surg 13(4):259–265

    Article  PubMed  Google Scholar 

  18. Adams WP Jr, Rohrich RJ, Gunter JP, Clark CP, Robinson JB Jr (1999) The rate of warping in irradiated and nonirradiated homograft rib cartilage: a controlled comparison and clinical implications. Plast Reconstr Surg 103(1):265–270

    Article  PubMed  Google Scholar 

  19. Erol OO (2000) The Turkish delight: a pliable graft for rhinoplasty. Plast Reconstr Surg 105(6):2229–2243

    Article  PubMed  CAS  Google Scholar 

  20. Daniel RK, Calvert JW (2004) Diced cartilage grafts in rhinoplasty surgery. Plast Reconstr Surg 113(7):2156–2171

    Article  PubMed  Google Scholar 

  21. Gunter JP, Clark CP, Friedman RM (1997) Internal stabilization of autogenous rib cartilage grafts in rhinoplasty: a barrier to cartilage warping. Plast Reconstr Surg 100(1):161–169

    Article  PubMed  CAS  Google Scholar 

  22. Helidonis E, Sobol E, Kavvalos G, Bizakis J, Christodoulou P, Velegrakis G, Segas J, Bagratashvili V (1993) Laser shaping of composite cartilage grafts. Am J Otolaryngol 14(6):410–412

    Article  PubMed  CAS  Google Scholar 

  23. Mordon S, Wang T, Fleurisse L, Creusy C (2004) Laser cartilage reshaping in an in vivo rabbit model using a 1.54 μm Er: glass laser. Lasers Surg Med 34(4):315–322

    Article  PubMed  Google Scholar 

  24. Ayhan M, Deren O, Görgü M, Erdoğan B, Dursun A (2002) Cartilage shaping with the Er:YAG laser: an in vivo experimental study. Ann Plast Surg 49(5):527–531

    Article  PubMed  Google Scholar 

  25. Gray DS, Kimball JA, Wong BJ (2001) Shape retention in porcine-septal cartilage following Nd:YAG (λ  =  1.32 μm) laser-mediated reshaping. Lasers Surg Med 29(2):160–164

    Article  PubMed  CAS  Google Scholar 

  26. Jones N, Sviridov A, Sobol E, Omelchenko A, Lowe J (2001) A prospective randomised study of laser reshaping of cartilage in vivo. Lasers Med Sci 16(4):284–290

    Article  PubMed  CAS  Google Scholar 

  27. Wong BJ, Milner TE, Harrington A, Ro J, Dao X, Sobol EN, Nelson JS (1999) Feedback-controlled laser-mediated cartilage reshaping. Arch Facial Plast Surg 1(4):282–287

    Article  PubMed  CAS  Google Scholar 

  28. Ovchinnikov Y, Sobol E, Svistushkin V, Shekhter A, Bagratashvili V, Sviridov A (2002) Laser septochondrocorrection. Arch Facial Plast Surg 4(3):180–185

    Article  PubMed  Google Scholar 

  29. Bourolias C, Prokopakis E, Sobol E, Moschandreas J, Velegrakis GA, Helidonis E (2008) Septal cartilage reshaping with the use of an erbium doped glass fiber laser: preliminary results. Rhinology 46(1):62–65

    PubMed  Google Scholar 

  30. Trelles MA, Mordon SR (2006) Correction of ear malformations by laser-assisted cartilage reshaping (LACR). Lasers Surg Med 38(7):659–665

    Article  PubMed  Google Scholar 

  31. Leclère FM, Petropoulos I, Mordon S (2010) Laser-assisted cartilage reshaping (LACR) for treating ear protrusions: a clinical study in 24 patients. Aesthetic Plast Surg 34(2):141–146

    Article  PubMed  Google Scholar 

  32. Foulad A, Ghasri P, Garg R, Wong B (2010) Stabilization of costal cartilage graft warping using infrared laser irradiation in a porcine model. Arch Facial Plast Surg 12(6):405–411

    PubMed  Google Scholar 

  33. Zemek A, Garg R, Wong BJ (2010) Model for estimating the threshold mechanical stability of structural cartilage grafts used in rhinoplasty. Laryngoscope 120(6):1089–1093

    PubMed  Google Scholar 

  34. Lee SJ, Liong K, Lee HP (2010) Deformation of nasal septum during nasal trauma. Laryngoscope 120(10):1931–1939

    Article  PubMed  Google Scholar 

  35. Lee SJ, Liong K, Tse KM, Lee HP (2010) Biomechanics of the deformity of septal L – Struts. Laryngoscope 120(8):1508–1515

    Article  PubMed  Google Scholar 

  36. Protsenko DE, Wong BJ (2007) Engineering of a straighter septum: numerical model of mechanical stress relaxation in laser-heated septal cartilage. Conf Proc IEEE Eng Med Biol Soc 2007:5399–5402

    Google Scholar 

  37. Oliaei S, Manuel C, Protsenko D, Hamamoto A, Chark D, Wong B (2012) Mechanical analysis of the effects of cephalic trim on lower lateral cartilage ­stability. Arch Facial Plast Surg 14(1):27–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. F. Wong M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oliaei, S., Manuel, C., Protsenko, D., Wong, B.J.F. (2013). Biomechanical Properties of Facial Cartilage Grafts. In: Shiffman, M., Di Giuseppe, A. (eds) Advanced Aesthetic Rhinoplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28053-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28053-5_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28052-8

  • Online ISBN: 978-3-642-28053-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics