Skip to main content

Laser -Based Joining of Metallic and Non-metallic Materials

  • Chapter
  • First Online:
Laser-Assisted Fabrication of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 161))

Abstract

Laser as a high intensity heat source can be effectively used for joining of materials by fusion welding and brazing in autogenous or in hybrid modes. In autogenous mode, welding is done in conduction , deep penetration , and keyhole mode. However, due to inherently high energy density available from a laser source, autogenous keyhole welding is the most popular laser welding mode. But, it has certain limitations like need for extremely good joint fit-up, formation of very hard welds in steel , keyhole instability, loss of alloying elements, etc. To overcome these limitations, innovative variants such as laser-arc hybrid welding , induction-assisted welding , dual beam welding , etc.,  have been developed. Using laser heat, brazing can be performed by melting a filler to fill the joints, without melting the base materials. Accomplishing laser-based joining as mentioned above requires appropriate choice of laser source, beam delivery system, processing head with appropriate optics and accessories. Basic principles of various laser-based joining processes, laser system technology, process parameters, metallurgical effects on different base materials, joint performance, and applications are explained in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Belforte, Markets Keep Getting Better, Industrial Laser Solutions for Manufacturing, January 2007, p. 8

    Google Scholar 

  2. Standard Welding Terms and Definitions, ANSI/AWS A3.0–89, (American Welding Society, USA, 1989)

    Google Scholar 

  3. T.W. Eagar, A.D. Mazzeo, ASM Handbook, in The Materials Information Society, vol. 6A, ed. by T. Lienert, T. Siewert, S. Babu, V. Acoff. Welding Fundamentals and Processing, Copy right 2011, ASM International, pp. 29–34

    Google Scholar 

  4. J.F. Ready, D.F. Farson, T. Feeley (eds.), The LIA Handbook of Laser Materials Processing (Springer Publishers, Berlin, 2001) pp. 310–316

    Google Scholar 

  5. J.H. Sharp, Laser fundamentals, Internet website of the Welding Institute (TWI), UK, 2004, (http://asaha.com/download/MMTk0MzI-). dated: 13th Sept 2011

  6. P. Solana, J.~L. Ocana, J. Phys. D 30, 1300–1313 (1997)

    Article  ADS  Google Scholar 

  7. A. Matsunawa, V. Semak, J. Phys. D: Appl. Phys. 30, 798–809 (1997)

    Article  ADS  Google Scholar 

  8. E. Beyer, Fiber Laser Welding, Industrial Laser Solutions for Manufacturing, July 2006, pp.13–14

    Google Scholar 

  9. D. Havrilla, Process Fundamentals of Industrial Laser Welding and Cutting (Rofin-Sinar Inc, Hamburg, 1999)

    Google Scholar 

  10. N. Lazov, L. Angelov, Physical model about laser impact and metals and alloys. Contemp. Mater. I-2, 124–128 (2010)

    Google Scholar 

  11. J. Xie, A. Kar, Laser welding of thin sheet steel with surface oxidation, Weld. J. 342–348 (1999)

    Google Scholar 

  12. M. Ono, A. Yoshitake, M. Ohmura, NKK Tech. Rev. 86, 13–18 (2002)

    Google Scholar 

  13. Y.F. Tzeng, J. Mater. Proc. Tech. 102, 40–47 (2000)

    Google Scholar 

  14. Advantages of Pulse Shaping: http://www.jklasers.com/advantages-of-pulse-shaping

  15. B. Shanmugarajan, J.K. Sarin Sundar, R. Bathe, S. Shukla, Laser Welding-A Productive Tool, presented at the Conference on Welding Productivity and Quality (WPQ 2007), (Naval Material Research Laboratory, Ambernath, India 2007)

    Google Scholar 

  16. H. Walker, Welding with Super Modulated Laser, Industrial Laser Solutions for Manufacturing, July 2007, pp. 14–17

    Google Scholar 

  17. M.G. Forrest, F. Lu, Joining new auto body materials, (http://www.industrial-lasers.com/articles/2007/03/joining-new-auto-body-materials.html); dated: 13th Sept 2011

  18. B. Shanmugarajan, G. Padmanabham, H. Kumar, S.K. Albert, A.K. Bhaduri, Sci. Tech. Weld. Joining 16, 528–534 (2011)

    Google Scholar 

  19. K.H. Leong, H.K. Geyer, K.R. Sabo, P.G. Sanders, J. Laser Appl. 9, 227–232 (1997)

    Google Scholar 

  20. E. Schubert, M. Klassen, I. Zerner, C. Walz, G. Sepold, J. Mater. Proces. Technol. 115, 2–8 (2001)

    Google Scholar 

  21. A. Ancona, T. Sibillano, L. Tricarico, R. Spina, P.M. Lugar, G. Basile, S. Schiavone, J. Mater. Proces. Tech. 164–165, 971–977 (2005)

    Google Scholar 

  22. K.H. Leong, K.R. Sabo, C.E. Albright, J. Laser Appl. 11, 109–118 (1999)

    Google Scholar 

  23. B. Hu, I.M. Richardson, J. Laser Appl. 70, 17–18 (2005)

    Google Scholar 

  24. M. Naeem, R. Jessett, Welding aluminum tailored blanks with Nd:YAG lasers for automotive applications, Practical welding today, Feb 2001, (http://www.thefabricator.com/article/automationrobotics/welding-aluminum-tailored-blanks-with-ndyag-lasers-for-automotive-applications)

  25. J.K. Kristensen, M.M. Andersen, N.K. Bruun, T.A. Jensen, S.E. Nielsen, J. Welding, Laser Welding of Aluminium Alloys—Process and Properties. in Proceedings of 8th NOLAMP Conference, Copenhagen, Denmark, August 2001

    Google Scholar 

  26. G. Padmanabham, B. Shanmugarajan, Experimental Investigation on Bead-on-Bead \(\hbox{CO}_{2}\) Laser Welding of Al Alloy 6061. Proceedings of the 8th ASM Trends in Welding Research Conference, Mountain View, Georgia, USA, 22 June 2008

    Google Scholar 

  27. B. Hu, I.M. Richardson, Mat. Sci. Eng. A 429, 287–294 (2006)

    Google Scholar 

  28. G. Dearden, M.C. Simmons, P.Okon, G.K. Schleyer, K.G. Watkins. Blast and Impact Resistance Studies of Laser Welded and Riveted Panel Structures. 21st International Congress on Application of laser and electro-optics, ICALEO 2002, Scottsdale, 14–17 October 2002

    Google Scholar 

  29. J.K. Sarin Sundar, G. Padmanabham, R.N. Gupta, R. Reddy. Investigations on Laser Welding Feasibility for Fabrication of Ti-6Al-4V Structure for Aerospace Applications SAME. Proceedings of the National Aerospace Manufacturing Seminar, NAMS-2007, Thiruvananthapuram, pp. 6, 2007

    Google Scholar 

  30. G.D. Janaki Ram, A. Venugopal Reddy, K. Prasad Rao, G.M. Reddy, J.K. Sarin Sundar, J. Mater. Process. Technol. 167, 73–82 (2005)

    Google Scholar 

  31. M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook. (1999)

    Google Scholar 

  32. J. Zhu, L. Li, Z. Liu, Appl. Surf. Sci. 247, 300–-306 (2005)

    Google Scholar 

  33. S. Lathabai, K.J. Barton, D. Harris, Magnesium Technol., 157–162 (2003)

    Google Scholar 

  34. A. Weisheit, R. Galun, B.L. Mordike, Weld. J. 77, 149–154 (1998)

    Google Scholar 

  35. H. Zhao, T. Debroy, Weld. J. 80, 204–210 (2001)

    Google Scholar 

  36. G. Shannon and P. Sheverloh, Green lasers for microwelding, industrial laser solutions for manufacturing, July 2011, (http://www.industrial-lasers.com/articles/print/volume-26/issue-4/features/green-lasers-for-laser-micro-welding.html)

  37. B. Regaard, S. Kaierle, R. Poprawe, J. Laser Appl. 21(4), 183–195 (2009)

    Google Scholar 

  38. J. Shao, Y. Yan, J. Phys. 15, 101–107 (2005)

    Google Scholar 

  39. M. Ono, K. Nakada, S. Kosuge, An investigation on \(\hbox{CO}_{2}\) laser-induced plasma, J. Jpn. Weld Soc. 10, 239–245 (1992)

    Google Scholar 

  40. J. Griebsch, L. Schlichtermann, M. Jurca, S. Heibler, D. Funk, Qualität laser, 5 1996 (http://www.datlas.se/web/PDF/Kessler_%20on-line_qualit.pdf)

  41. M. Wouters, Hybrid Laser MIG Welding: An investigation of geometrical considerations, Licenciate Thesis, Luleå University of Technology, Lulea, Sweden, Nov 2005, (http://epubl.ltu.se/1402-1757/2005/82/LTU-LIC-0582-SE.pdf)

  42. M.E. Rayes, C. Walz, G. Sepold, The influence of various hybrid welding parameters on bead geometry. Suppl. Weld. J. 147-S–153-S (2004)

    Google Scholar 

  43. M. Ono, Y. Shinbo, A. Yoshitake, M. Ohmura, Development of laser-arc hybrid welding. NKK Techn. Rev. 86, 8–12, (2002)

    Google Scholar 

  44. B. Shanmugarajan, P. Rajesh, E. Krishnaveni, G. Padmanabham, Process and fusion behavior during \(\hbox{CO}_{2}\) laser-MIG hybrid welding of thick section mild steel plates. Proceedings of the International Welding Symposium, IWS2k10, Mumbai, India, 10–12 (2010)

    Google Scholar 

  45. G. Campana, A. Fortunato, A. Ascari, G. Tani, L. Tomesani, J. Mater. Process. Tech. 191, 111–113 (2007)

    Google Scholar 

  46. Laser induction welding, (Fraunhofer institute for materials and beam technologies) (IWS), (http://www.ccl.fraunhofer.org/download/laser_welding_powertrain_components.pdf)

  47. R. Sinar, Scanner and remote welding, (http://www.rofin.com/en/applications/laser_welding/scanner_and_remote_welding)

  48. J. Xie, Weld. J. 223–230 (Oct 2002)

    Google Scholar 

  49. H. Laukant, C. Wallmann, M. Mueller, M. Korte, B. Stirn, H.-G. Haldenwanger, U. Glatzel, Flux less laser beam joining of aluminium with zinc coated steel. Sci. Tech. Weld. Joining 10, 219–226 (2005)

    Google Scholar 

  50. F. Lu, B. Lu, X. Tang, S. Yao, Int. J. Adv. Manuf. Technol. 37, 961–965 (2008)

    Google Scholar 

  51. L.Q. Li, X.S. Feng, Y.B. Chen, Trans. Nonferrous Met. Soc. China 18, 1065–1070 (2008)

    Google Scholar 

  52. A. Koltsov, N. Bailly, L. Cretteur, Fatigue behavior of tailor (laser) welded blanks for automotive applications. J. Mater. Sci. 45, 2118–2125 (2010)

    Google Scholar 

  53. A. Lauzinger, Selecting Laser Selective Soldering, Industrial Laser Solutions for Manufacturing (2004) p. 10

    Google Scholar 

  54. K.E. Kleine, M. Nagel, Welding Plastic, Industrial Laser Solutions for Manufacturing, October 2006

    Google Scholar 

  55. Laser welding in the right light, ILS Newsletter, 17 Feb 2011

    Google Scholar 

  56. S. Katayama, ILS Newsletter, 1 Nov 2010, (http://spie.org/app/profiles/viewer.aspx?profile=EMIZBO)

  57. D. Anand, D.L. Chen, S.D. Bhole, P. Andreychuk, G. Boudreau, Fatigue behaviour of tailor (laser) welded blanks for automotive applications. Mater. Sci. Eng. A 420, 199–207 (2006)

    Google Scholar 

  58. S.M. Chan, L.C. Chan, T.C. Lee, J. Mater. Process. Tech. 132, 95–101 (2003)

    Google Scholar 

  59. M. Uchihara, K. Fukui, Weld. Int. 20, 612–621 (2006)

    Google Scholar 

  60. P. Rizzi, S. Bellingeri, F. Massimino, D. Baldissin, L. Battezzati, J. Phys. Conf. Series, 144(1), 012005, (2009), (http://iopscience.iop.org/1742-6596/144/1/012005/pdf/1742-6596_144_1_012005.pdf)

  61. R.S. Sharma, P. Molian, Mat. Design 30, 4146–4155 (2009)

    Google Scholar 

  62. B. Shanmugarajan, J. K. Sarin Sundar, G. Padmanabham, Laser Welding of Advanced High Strength Steels for Tailor Welded Blanks (TWB) Applications, SAE No.2009-028-0012

    Google Scholar 

  63. S. Chatterjee, R. Saha, M. Shome, R.K. Ray, Metallur. Mater. Trans A 40, 1142–1152 (2009)

    Google Scholar 

  64. C. Marley, G. Shannon, Welding medical devices, industrial laser solutions for manufacturing, July 2004, (http://www.miyachiunitek.com/servlet/servlet.FileDownload?retURL=%2Fapex%2FProducts_LaserWelding_LW5AM&file=01580000001JcYlAAK)

  65. F.J. Gruber, Lasers—where they make sense, industrial laser solutions for manufacturing, March 2006, p. 10 (http://www.industrial-lasers.com/articles/2006/03/lasers-where-they-make-sense.html)

  66. J. Roe, Vision guided laser welding improves battery safety performance, industrial laser solutions for manufacturing, (http://www.industrial-lasers.com/articles/print/volume-250/issue-6/features/vision-guided-laser-welding-improves-battery-safety-performance.html)

  67. I. Roetzer, Laser Beam Welding Makes Aircraft Lighter, Fraunhofer Magazine 1, (2005) pp.~36–37

    Google Scholar 

  68. U. Duerr, Welding solar thermal absrobers, industrial laser solutions for manufacturing, Sept 2006, (http://www.industrial-lasers.com/articles/2006/09/welding-thermal-solar-absorbers.html)

  69. S. Keitel, U. Jasnau, J. Neubert, Applications of Fiber Laser Based Deep Penetration Welding in Shipbuilding, Rail Car Industries and Pipe Welding, 4th International Symposium on High-Power Laser and their Applications, 24–26 June 2008, St. Petersburg, Russia, (http://www.industrial-lasers.com/articles/print/volume-26/issue-3/features/laser-hybrid-pipeline.html)

Download references

Acknowledgments

Authors wish to specially acknowledge all the researchers whose work is described in this review for their valuable contributions. They would also like to thank Dr G. Sundararajan, Director, ARCI for permitting to publish this book article. Further, authors would like to express their gratitude to their colleagues at the Centre for Laser Processing of Materials, ARCI for the support and assistance rendered in compiling this work. Special thanks are due to Dr. I. Ganesh for giving shape to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Padmanabham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Padmanabham, G., Shanmugarajan, B. (2013). Laser -Based Joining of Metallic and Non-metallic Materials. In: Majumdar, J., Manna, I. (eds) Laser-Assisted Fabrication of Materials. Springer Series in Materials Science, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28359-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28359-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28358-1

  • Online ISBN: 978-3-642-28359-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics