Skip to main content

Laser Surface Processing of Polymers for Biomedical Applications

  • Chapter
  • First Online:
Laser-Assisted Fabrication of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 161))

Abstract

Polymeric biomaterials offer excellent bulk properties for biological applications; however, the surface properties they possess do not lend themselves to high performance in regard to biomimetics. Hence, it is necessary to vary the surface properties of the material to enhance the wettability and bioactivity. In the present contribution, the surface characteristics and properties of nylon 6,6 modified by \(\hbox{CO}_{2}\) laser processing has been presented in detail. From analyzing the laser-induced patterned surfaces it was found that the surface energy and polar component had decreased by up to \(7\,\hbox{mJm}^{-2}\) and the surface roughness had considerably increased. From the results it was not possible to develop a discernable correlation between the cell response and surface characteristics such as roughness and surface energy. However, laser patterned surfaces in this instance gave rise to enhanced biomimetic properties for nylon 6,6 in terms of osteoblast cell response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.R. Paital, N.B. Dahotre, Calcium phosphate coatings for bio-implant applications: materials, performance factors and methodologies. Mater. Sci. Eng., R 66, 1–70 (2009)

    Article  Google Scholar 

  2. J. Lawrence, L. Li, Modification of the wettability characteristics of polymethyl methacrylate (PMMA) by means of \(\hbox{CO}_{2},\) Nd:YAG, excimer and high power diode laser irradiation. Mater. Sci. Eng., A 303, 142–149 (2001)

    Google Scholar 

  3. L. Hao, J. Lawrence, Laser Surface Treatment of Bio-implant Materials (Wiley, New Jersey, 2005)

    Book  Google Scholar 

  4. J. Lai, B. Sunderland, J. Xue, S. Yan, W. Zhao, M. Folkard, B.D. Michael, Y. Wang, Study on hydrophilicity of polymer surfaces improved by plasma treatment. Appl. Surf. Sci. 252, 3375–3379 (2006)

    Article  ADS  Google Scholar 

  5. P. Roach, D. Eglin, K. Rohde, C.C. Perry, Modern biomaterials: a review-bulk properties and implications of surface modifications. J. Mater. Sci.: Mater. Med. 18, 1263–1277 (2007)

    Article  Google Scholar 

  6. M.J.P. Biggs, R.G. Richards, N. Gadegaard, C.D.W. Wilkinson, M.J. Dalby, Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J. Orthop. Res. 25, 273–282 (2007)

    Article  Google Scholar 

  7. A. Diener, B. Nebe, F. Luthen, P. Becker, U. Beck, H.G. Neumann, J. Rychly, Control of focal adhesion dynamics by material surface characteristics. Biomaterials 26, 383–392 (2005)

    Article  Google Scholar 

  8. W. Song, Y.K. Jun, Y. Han, S.H. Hong, Biomimetic apatite coatings on micro-arc oxidzed titania. Biomaterials 25, 3341–3349 (2004)

    Article  Google Scholar 

  9. L. Hao, J. Lawrence, L. Li, The wettability modification of bio-grade stainless steel in contact with simulated physiological liquids by the means of laser irradiation. Appl. Surf. Sci. 247, 453–457 (2005)

    Article  ADS  Google Scholar 

  10. M. Nagano, T. Kitsugi, T. Nakamura, T. Kokubo, M. Tanahashi, Bone bonding ability of an apatite-coated polymer produced using a biomimetic method: a mechanical and histological study in vivo. J. Biomed. Mater. Res. 31, 487–494 (1996)

    Article  Google Scholar 

  11. C. Rey, Orthopedic biomaterials, bioactivity, biodegradation; a physical-chemical approach. J. Biomech. 31, 182 (1998)

    Article  Google Scholar 

  12. M. Uchida, H. Kim, T. Kokubo, K. Tanaka, T. Nakamura, Structural dependence of apatite formation on zirconia gels in a simulated body fluid. J. Ceram. Soc. Jpn. 110, 710–715 (2002)

    Article  Google Scholar 

  13. Q. Zhao, Y. Liu, C. Wang, S. Wang, Evaluation of bacterial adhesion on Si-doped diamond-like carbon films. Appl. Surf. Sci. 253, 7254–7259 (2007)

    Article  ADS  Google Scholar 

  14. J. Lawrence, L. Hao, H.R. Chew, On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy. Surf. Coat. Technol. 200, 5581–5589 (2006)

    Article  Google Scholar 

  15. D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008)

    Article  Google Scholar 

  16. D.J. Chauvel-Lebret, P. Auroy, M. Bonnaure-Mallet, Chapter 13: Biocompatibility of Elastomers. In: S. Dumitriu (eds) Polymeric Biomaterials, 2nd edn. (CRC Press Taylor & Francis Group, Boca Raton, 2001) pp. 311–360.

    Google Scholar 

  17. M.J. Fauran-Clavel, J. Oustrin, Alkaline phosphatase and bone calcium parameters. Bone 7, 95–99 (1986)

    Article  Google Scholar 

  18. A. De Renzo, V. Micera, S. Vaglio, L. Luciano, C. Selleri, B. Rotoli, Induction of alkaline phosphatase activity in chronic myeloid leukemia cells: in vitro studies and speculative hypotheses. Am. J. Hematol. 35, 278–280 (1990)

    Article  Google Scholar 

  19. L. Xu, C.A. Siedlecki, Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28, 3273–3283 (2007)

    Article  Google Scholar 

  20. M.S. Lord, B.G. Cousins, P.J. Doherty, J.M. Whitelock, A. Simmons, R.L. Williams, B.K. Milthorpe, The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials 27, 4856–4862 (2006)

    Article  Google Scholar 

  21. H. Arwin, Ellipsometry on thin organic layers of biological interest: characterization and applications. Thin Solid Films 377–378, 48–56 (2000)

    Article  Google Scholar 

  22. P.A. Cuypers, W.T. Hermens, H.C. Hemker, Ellipsometry as a tool to study protein films at liquid–solid interfaces. Anal. Biochem. 84, 56–67 (1978)

    Article  Google Scholar 

  23. H. Elwing, Protein absorption and ellipsometry in biomaterial research. Biomaterials 19, 397–406 (1998)

    Article  Google Scholar 

  24. Z. Ma, Z. Mao, C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf. B 60, 137–157 (2007)

    Article  Google Scholar 

  25. E.A. Vogler, Role of Water in Biomaterials. In: B.D. Ratner (eds) Biomaterials Science, 2nd edn. (Elsevier Academic Press, San Diego, 2004) pp. 59.

    Google Scholar 

  26. C.J. Van Oss, C.F. Gillman, A.W. Neumann, Phagocytic Engulfment and Cell Adhesiveness (Marcel Dekker, New York, 1975)

    Google Scholar 

  27. M.S. Kim, G. Khang, H.B. Lee, Gradient polymer surfaces for biomedical applications. Prog. Polym. Sci. 33, 138–164 (2008)

    Article  Google Scholar 

  28. M.D. Ball, R. Sherlock, T. Glynn, Cell interactions with laser-modified polymer surfaces. J. Mater. Sci. 15, 447–449 (2004)

    Article  Google Scholar 

  29. K.S. The, Y.W. Lu, Topography and wettability control in biocompatible polymer for BioMEMs applications, in Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 2008

    Google Scholar 

  30. M. Ma, R.M. Hill, Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 11, 193 (2006)

    Article  Google Scholar 

  31. Y.T. Cheng, D.E. Rodak, C.A. Wong, C.A. Hayden, Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 17, 1359–1362 (2006)

    Article  ADS  Google Scholar 

  32. A.W. Adamson, Potential distortion model for contact angle and spreading II, temperature dependent effects. J. Colloidal Interface Sci. 44, 273–281 (1973)

    Article  Google Scholar 

  33. J. De Connick, F. Dunlop, Wetting transitions and contact angles. Europhys. Lett. 11, 1291–1296 (1987)

    Article  ADS  Google Scholar 

  34. C.J. Van Oss, R.J. Good, M.K. Chaudury, The role of van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. Interface Sci. 111, 378–390 (1986)

    Article  Google Scholar 

  35. E. Chibowski, On some relations between advancing, receding and Young’s contact angles. Adv. Colloid Interface Sci. 133, 51–59 (2007)

    Article  Google Scholar 

  36. D.F. Gerson, An empirical equation-of-state for solid-fluid interfacial free energies. Colloid Polym. Sci. 260, 539–544 (1982)

    Article  Google Scholar 

  37. G. Whyman, E. Bormashenko, T. Stein, The rigourous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)

    Article  ADS  Google Scholar 

  38. P. Jakubczyk, M. Napiorkowski, The influence of droplet size on line tension. J. Phys.: Condens. Matter 16, 6917–6928 (2004)

    Article  ADS  Google Scholar 

  39. J. Bico, U. Thiele, D. Quere, Wetting of textured surfaces. Colloids Surf. A 206, 41–46 (2002)

    Article  Google Scholar 

  40. Y.C. Jung, B. Bhushan, Wetting transition of water droplets on superhydrophobic patterned surfaces. Scripta Mater. 57, 1057–1060 (2007)

    Article  Google Scholar 

  41. S.M. Lee, T.H. Kwon, Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf. J. Micromech. Microeng. 17, 687–692 (2007)

    Article  ADS  Google Scholar 

  42. D.G. Waugh, J. Lawrence, D.J. Morgan, C.L. Thomas, Interaction of \(\hbox{CO}_{2}\) laser-modified nylon with osteoblast cells in relation to wettability. Mater. Sci. Eng., C 29, 2514–2524 (2009)

    Google Scholar 

  43. D.G. Waugh, J. Lawrence, C.D. Walton, R.B. Zakaria, On the effects of using \(\hbox{CO}_{2}\) and \(\hbox{F}_{2}\) lasers to modify the wettability of a polymeric biomaterial. J. Opt. Laser Technol. 42, 347–356 (2010)

    Google Scholar 

  44. M.J. Jaycock, G.D. Parfitt, Chemistry of Interfaces (Wiley, Chichester, 1981)

    Google Scholar 

  45. W.A. Zisman, Relation of Equilibrium Contact Angle to Liquid and Solid Constitution Contact Angle Wettability and Adhesion (American Chemical Society, Washington, 1964)

    Google Scholar 

  46. W.A. Zisman, Influence of constitution on adhesion. Ind. Eng. Chem. 55, 19–38 (1963)

    Article  Google Scholar 

  47. F.M. Fowkes, Attractive forces at interfaces. Ind. Eng. Chem. 5, 40–52 (1964)

    Article  Google Scholar 

  48. M. Zenkiewicz, Methods for calculation of surface free energy of solids. J. Achievements Mater. Manuf. Eng. 24, 137–145 (2007)

    Google Scholar 

  49. R.S. Benson, Use of radiation in biomaterials science. Nucl. Instrum. Methods Phys. Res. B 191, 752–757 (2002)

    Article  ADS  Google Scholar 

  50. C. Mao, W. Zhao, C. Zhu, A. Zhu, J. Shen, S. Lin, In vitro studies of platelet adhesion on UV radiation-treated nylon surface. Carbohydr. Polym. 59, 19–25 (2005)

    Article  Google Scholar 

  51. E.A. Hegazy, H.A.A. El-Rehim, H. Kamal, K.A. Kandeel, Advances in radiation grafting. Nucl. Instrum. Methods Phys. Res. B 185, 235–240 (2001)

    Article  ADS  Google Scholar 

  52. Z. Zhu, M.J. Kelley, Grafting onto poly (ethylene terephthalate) driven by 172 nm UV light. Appl. Surf. Sci. 252, 303–310 (2005)

    Article  ADS  Google Scholar 

  53. B. Ranby, Surface modification and lamination of polymers by photografting. Int. J. Adhes. Adhes. 151, 337–343 (1999)

    Article  Google Scholar 

  54. B. Ranby, W.T. Yang, O. Tretinnikov, Surface photografting of polymer fibers, films and sheets. Nucl. Instrum. Methods Phys. Res. B 151, 301–305 (1999)

    Article  ADS  Google Scholar 

  55. F. Arefi-Khonsari, M. Tatoulian, F. Bretagnol, O. Bouloussa, F. Rondelez, Processing of polymers by plasma technologies. Surf. Coat. Technol. 200, 14–20 (2005)

    Article  Google Scholar 

  56. F. Milde, K. Goedicke, M. Fahland, Adhesion behaviour of PVD coatings on ECR plasma and ion beam treated polymer films. Thin Solid Films 279, 169–173 (1996)

    Article  ADS  Google Scholar 

  57. R.M.A. Abdul majeed, A. Datar, S.V. Bhoraskar, V.N. Bhoraskar, Surface modification of polymers by atomic oxygen using ECR plasma. Nucl. Instrum. Methods Phys. Res. B 258, 345–351 (2007)

    Article  ADS  Google Scholar 

  58. Q.F. Wei, W.D. Gao, D.Y. Hou, X.Q. Wang, Surface modification of polymer nanofibres by plasma treatment. Appl. Surf. Sci. 245, 16–20 (2005)

    Article  ADS  Google Scholar 

  59. X. Wang, M.G. McCord, Grafting of poly(n-isopropylacrylamide) onto nylon and polystyrene surfaces by atmospheric plasma treatment followed with free radical graft copolymerization. J. Appl. Polym. Sci. 104, 3614–3621 (2007)

    Article  Google Scholar 

  60. P.K. Chu, Plasma surface treatment of artificial orthopedic and cardiovascular biomaterials. Surf. Coat. Technol. 201, 5601–5606 (2007)

    Article  Google Scholar 

  61. P.K. Chu, Enhancement of surface properties of biomaterials using plasma-based technologies. Surf. Coat. Technol. 201, 8076–8082 (2007)

    Article  Google Scholar 

  62. P.K. Chu, Bioactivity of plasma implanted biomaterials. Nucl. Instrum. Methods Phys. Res. B 242, 1–7 (2006)

    Article  ADS  Google Scholar 

  63. M.C. Porte-Durrieu, C. Aymes-Chodur, N. Betz, B. Brouillaud, F. Rouais, A.L. Moel, C. Baquey, Synthesis of biomaterials by swift heavy ion grafting: preliminary results of haemocompatibility. Nucl. Instrum. Methods Phys. Res. B 131, 364–375 (1997)

    Article  ADS  Google Scholar 

  64. F.Z. Cui, Z.S. Luo, Biomaterials modification by ion-beam processing. Surf. Coat. Technol. 112, 278–285 (1999)

    Article  Google Scholar 

  65. W.M. Lau, Ion beam techniques for functionalization of polymer surfaces. Nucl. Instrum. Methods Phys. Res. B 131, 341–349 (1997)

    Article  ADS  Google Scholar 

  66. J.S. Cho, Y.W. Beag, S. Han, K.H. Kim, J. Cho, S.K. Koh, Hydrophilic surface formation on materials and its applications. Surf. Coat. Technol. 128–129, 66–70 (2000)

    Article  Google Scholar 

  67. C. Aubry, T. Trigaud, J.P. Moliton, D. Chiron, Polymer gratings achieved by focused ion beam. Synth. Met. 127, 307–311 (2002)

    Article  Google Scholar 

  68. S. Iwanaga, Y. Akiyama, A. Kikuchi, M. Yamato, K. Sakai, T. Okano, Fabrication of a cell array on ultrathin hydrophilic polymer gels utilising electron beam irradiation and UV excimer laser ablation. Biomaterials 26, 5395–5404 (2005)

    Article  Google Scholar 

  69. F. Yu, P. Li, H. Shen, S. Mathur, C.M. Lehr, U. Bakowsky, F. Mucklich, Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface. Biomaterials 26, 2307–2312 (2005)

    Article  Google Scholar 

  70. H. Mirzadeh, M. Dadsetan, Influence of laser surface modifying of polyethylene terephthalate on fibroblast cell adhesion. Radiat. Phys. Chem. 67, 381–385 (2003)

    Article  ADS  Google Scholar 

  71. V. Hasirci, H. Kenar, Novel surface patterning approaches for tissue engineering and their effect on cell behaviour. Nanomedicine 1, 73–90 (2006)

    Article  Google Scholar 

  72. M. Dadsetan, H. Mirzadeh, N. Sharifi-Sanjani, M. Daliri, Cell behaviour on laser surface-modified polyethylene terephthalate in vitro. J. Biomed. Mater. Res. 57, 183–189 (2001)

    Article  Google Scholar 

  73. E. Sarantopoulou, Z. Kollia, A.C. Cefalas, A.M. Douvas, M. Chatzichristidi, P. Argitis, S. Kobe, Polymer self-assembled nano-structures and surface relief gratings induced with laser at 157 nm. Appl. Surf. Sci. 253, 7884–7889 (2007)

    Article  ADS  Google Scholar 

  74. K. Callewaert, Y. Martele, L. Breban, K. Naessans, P. Vandaele, R. Baets, G. Geuskens, E. Schacht, Excimer laser induced patterning of polymeric surfaces. Appl. Surf. Sci. 208–209, 218–225 (2003)

    Article  Google Scholar 

  75. W. Pfleging, M. Bruns, A. Welle, S. Wilson, Laser-assisted modification of polystyrene surfaces for cell culture applications. Appl. Surf. Sci. 253, 9177–9184 (2007)

    Article  ADS  Google Scholar 

  76. A.C. Duncan, F. Weisbuch, F. Rouais, S. Lazare, Ch. Baquey, Laser microfabricated model surfaces for controlled cell growth. Biosens. Bioelectron. 17, 413–426 (2002)

    Article  Google Scholar 

  77. C. David, J. Wei, T. Lippert, A. Wokaun, Diffractive grey-tone phase masks for laser ablation lithography. Microelectron. Eng. 57–58, 453–460 (2001)

    Article  Google Scholar 

  78. C.M. Chan, T.M. Ko, H. Hiraoka, Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 24, 1–54 (1996)

    Article  Google Scholar 

  79. K.S. Tiaw, M.H. Hong, S.H. Teoh, Precision laser micro-processing of polymers. J. Alloys Compd. 449, 228–231 (2008)

    Article  Google Scholar 

  80. F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.M. Lehr, U. Bakowsky, In vitro cell response to a polymer surface micropatterned by laser interference lithography. Biomacromolecules 6, 1160–1167 (2005)

    Article  Google Scholar 

  81. S. Dadbin, Surface modification of LDPE film by \(\hbox{CO}_{2}\) pulsed laser irradiation. Eur. Polym. J. 38, 2489–2495 (2002)

    Google Scholar 

  82. C.A. Aguilar, Y. Lu, S. Mao, S. Chen, Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Biomaterials 26, 7642–7649 (2005)

    Article  Google Scholar 

  83. C.D. Skordoulis, M. Makropoulou, A.A. Serafenitides, Ablation of nylon-6,6 with UV and IR lasers. Appl. Surf. Sci. 86, 239–244 (1995)

    Article  ADS  Google Scholar 

  84. T. Lippert, J. Wei, A. Wokaun, N. Hoogen, O. Nuyken, Polymers designed for laser microstructuring. Appl. Surf. Sci. 168, 270–272 (2000)

    Article  ADS  Google Scholar 

  85. B. Losekrug, A. Meschede, H.U. Krebs, Pulsed laser deposition of smooth poly(methyl methacrylate) films at 248 nm. Appl. Surf. Sci. 254, 1312–1315 (2007)

    Article  ADS  Google Scholar 

  86. R. Cristescu, I. Stamatin, D.E. Mihaiescu, C. Ghica, M. Albulescu, I.N. Mihailescu, D.B. Chrisey, Pulsed laser deposition of biocompatible polymers: a comparative study. Thin Solid Films 262, 453–454 (2004)

    Google Scholar 

  87. D.B. Chrisey, G.K. Hubler (eds), Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  88. E. Rebollar, M.M. Villavieja, S. Gaspard, M. Oujja, T. Corrales, S. Georgiou, C. Domingo, P. Bosch, M. Catillejo, Pulsed laser deposition of polymers doped with fluorescent probes, Application to Environmental Sensors. J. Phys.: Conf. Ser. 59, 305–309 (2007)

    Google Scholar 

  89. D.S. Shin, J.H. Lee, J. Suh, T.H. Kim, Determination of the debris produced from poly(ethylene terephthalate) during KrF excimer laser ablation. Appl. Surf. Sci. 252, 2319–2327 (2006)

    Article  ADS  Google Scholar 

  90. H. Niino, A. Yabe, Chemical surface modification of fluorocarbon polymers by excimer laser processing. Appl. Surf. Sci. 96–98, 550–557 (1996)

    Article  Google Scholar 

  91. L.D. Laude, N. Boutarek, K. Kolev, Excimer lasers for surface engineering of polymer-based composites. Nucl. Instrum. Methods Phys. Res. B 105, 254–257 (1995)

    Article  ADS  Google Scholar 

  92. M. Charbonnier, M. Alami, M. Romand, J.P. Girardeau-Montaut, M. Afif, Laser-assisted grafting onto polycarbonate: application to metallization by chemical means. Appl. Surf. Sci. 109/110, 206–211 (1997)

    Article  Google Scholar 

  93. H. Mirzadeh, A.A. Katbab, M.T. Khorasani, R.P. Burford, E. Gorgin, A. Golestani, Cell attachment to laser-induced AAm-and HEMA-grafted ethylene-propylene rubber as biomaterial: in vivo study. Biomaterials 16, 641–648 (1995)

    Article  Google Scholar 

  94. H. Mirzadeh, A.A. Katbab, R.P. Burford, \(\hbox{CO}_{2}\)-laser graft copolymerization of HEMA and NVP onto ethylene-propylene rubber (EPR) as biomaterial-(III). Radiat. Phys. Chem. 46, 859–862 (1995)

    Google Scholar 

  95. D.G. Rance, Chapter 6: Thermodynamics of Wetting: From Its Molecular Basis to Technological Application. In: D.M. Brewis (eds) Surface Analysis and Pretreatment of Plastics and Metals (Applied Science Publishers, Essex, 1982) pp. 121.

    Google Scholar 

  96. D.G. Waugh, J. Lawrence, Wettability characteristics variation of nylon 6,6 by means of \(\hbox{CO}_{2}\) laser generated surface patterns, ICALEO 2008 Proceedings, vol 101, Pechanga, CA, USA, 20–23 Oct 2008, pp. 61–69

    Google Scholar 

  97. Y.C. Jung, B. Bhushan, Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17, 4970–4980 (2006)

    Article  ADS  Google Scholar 

  98. Y.T. Cheng, D.E. Rodak, Is the lotus leaf superhydrophobic?. Appl. Phys. Lett. 86, 144101/1–144101/3 (2005)

    ADS  Google Scholar 

  99. X. Chen, T. Lu, The apparent state of droplets on a rough surface. Sci. China, Ser. G 52, 233–238 (2009)

    Article  Google Scholar 

  100. X. Wu, L. Zheng, D. Wu, Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Langmuir 21, 2665–2667 (2005)

    Article  Google Scholar 

  101. J. Lawrence, L. Li, Laser modification of the wettability characteristics of engineering materials (Professional Engineering Publishing Limited, Suffolk, 2001)

    Google Scholar 

  102. B. Nebe, F. Luthen, R. Lange, P. Becker, U. Beck, J. Rychly, Topography-induced alterations in adhesion structures affect mineralization in human osteoblasts on titanium. Mater. Sci. Eng., C 24, 619–624 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Lawrence .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waugh, D., Lawrence, J. (2013). Laser Surface Processing of Polymers for Biomedical Applications. In: Majumdar, J., Manna, I. (eds) Laser-Assisted Fabrication of Materials. Springer Series in Materials Science, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28359-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28359-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28358-1

  • Online ISBN: 978-3-642-28359-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics