Skip to main content

Packaging in Synthetic Biology

  • Chapter
  • First Online:
Bio and Nano Packaging Techniques for Electron Devices

Abstract

In modern biosciences, the biological cell is perceived as a mechanistic system similar to a factory or a highly integrated technical device consisting of a set of different interacting machines which are built from parts acting by mechanical and even electronic means. In this concept, the biological cell represents an extraordinary example for a high level of packaging which is without comparison in technical disciplines created by mankind. Concerning packaging the cell membrane plays a crucial role since it does not only define the spatial boundary of the cell but also provides the platform for many functional elements and regulates the communication of the cell with the environment and neighboring cells. Furthermore, biological matter as a machinery shows characteristics that makes it preferable over technical machinery, namely the capability of adaption, self-repair, self-assembly and even self-replication. If one is interested not only in investigating this issue but is interested in an engineering approach to build functional systems following the biological concept of packaging, the bottom-up synthetic biology is the choice of method. This chapter presents approaches in synthetic biology using biomembranes and membrane proteins for biological packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahams, J.P., Leslie, A.G., Lutter, R., Walker, J.E.: Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491), 621–628 (1994)

    Article  CAS  Google Scholar 

  2. Akashi, K., Miyata, H., Itoh, H., Kinosita, K.: Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71(6), 3242–3250 (1996)

    Article  CAS  Google Scholar 

  3. Alberts, B., Bray, D., Lewis, J.: Molecular Biology of the Cell. Taylor & Francis, London (2002)

    Google Scholar 

  4. Angelova, M.I., Dimitrov, D.S.: Liposome electroformation. Faraday Discuss. Chem. Soc. 81(81), 303–311 (1986)

    Article  CAS  Google Scholar 

  5. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16(9), 1055–1069 (1976)

    Article  CAS  Google Scholar 

  6. Bachmann, P.A., Luisi, P.L., Lang, J.: Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357(6373), 57–59 (1992)

    Article  CAS  Google Scholar 

  7. Bacia, K., Schwille, P., Kurzchalia, T.: Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. U. S. A. 102(9), 3272–3277 (2005)

    Article  CAS  Google Scholar 

  8. Bayley, H., Cronin, B., Heron, A., Holden, M.A., Hwang, W.L., Syeda, R., Thompson, J., Wallace, M.: Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2009)

    Article  Google Scholar 

  9. Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S.: Living technology: exploiting life’s principles in technology. Artif. Life 16(1), 89–97 (2010)

    Article  Google Scholar 

  10. Benes, M., Billy, D., Benda, A., Speijer, H., Hof, M., Hermens, W.T.: Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass. Langmuir 20(23), 10,129–10,137 (2004)

    Google Scholar 

  11. Bertoncello, P., Nicolini, D., Paternolli, C., Bavastrello, V., Nicolini, C.: Bacteriorhodopsin-based Langmuir–Schaefer films for solar energy capture. IEEE Trans. Nanobiosci. 2(2), 124–132 (2003)

    Article  Google Scholar 

  12. Bezrukov, S.M., Kullman, L., Winterhalter, M.: Probing sugar translocation through maltoporin at the single channel level. FEBS Lett. 476(3), 224–228 (2000)

    Article  CAS  Google Scholar 

  13. Bi, E.F., Lutkenhaus, J.: FtsZ ring structure associated with division in Escherichia coli. Nature 354(6349), 161–164 (1991)

    Article  CAS  Google Scholar 

  14. Born, M.: Volumen und Hydratationswärme der Ionen. Z. Phys. A: Hadrons Nucl. 1, 45–48 (1920)

    CAS  Google Scholar 

  15. Castile, J.D., Taylor, K.M.: Factors affecting the size distribution of liposomes produced by freeze-thaw extrusion. Int. J. Pharm. 188(1), 87–95 (1999)

    Article  CAS  Google Scholar 

  16. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C.: Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805 (1994)

    Article  CAS  Google Scholar 

  17. Chen, I.A., Roberts, R.W., Szostak, J.W.: The emergence of competition between model protocells. Science 305(5689), 1474–1476 (2004)

    Article  CAS  Google Scholar 

  18. Chiantia, S., Ries, J., Schwille, P.: Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim. Biophys. Acta 1788(1), 225–233 (2009)

    Article  CAS  Google Scholar 

  19. Cook, G.M., Keis, S., Morgan, H.W., von Ballmoos, C., Matthey, U., Kaim, G., Dimroth, P.: Purification and biochemical characterization of the \({\rm F}_1{\rm F}_o\)-ATP synthase from thermoalkaliphilic bacillus sp. strain TA2.A1. J. Bacteriol. 185(15), 4442–4449 (2003)

    Article  CAS  Google Scholar 

  20. Coons, A.H., Creech, H.J., Jones, R.N., Berliner, E.: The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45(3), 159–170 (1942)

    CAS  Google Scholar 

  21. Cowan, S.W., Garavito, R.M., Jansonius, J.N., Jenkins, J.A., Karlsson, R., König, N., Pai, E.F., Pauptit, R.A., Rizkallah, P.J., Rosenbusch, J.P.: The structure of OmpF porin in a tetragonal crystal form. Structure 3(10), 1041–1050 (1995)

    Article  CAS  Google Scholar 

  22. Cowan, S.W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R.A., Jansonius, J.N., Rosenbusch, J.P.: Crystal structures explain functional properties of two E. coli porins. Nature 358(6389), 727–733 (1992)

    Article  CAS  Google Scholar 

  23. Dajkovic, A., Lutkenhaus, J.: Z ring as executor of bacterial cell division. J. Mol. Microbiol. Biotechnol. 11(3–5), 140–151 (2006)

    Article  CAS  Google Scholar 

  24. Danelon, C., Suenaga, A., Winterhalter, M., Yamato, I.: Molecular origin of the cation selectivity in OmpF porin: single channel conductances versus free energy calculation. Biophys. Chem. 104(3), 591–603 (2003)

    Article  CAS  Google Scholar 

  25. Eigen, M., Rigler, R.: Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. U. S. A. 91(13), 5740–5747 (1994)

    Article  CAS  Google Scholar 

  26. García-Sáez, A.J., Carrer, D.C., Schwille, P.: Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. Methods Mol. Biol. 606, 493–508 (2010)

    Article  Google Scholar 

  27. Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisova, E.A., Baden-Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A., Merryman, C., Young, L., Noskov, V.N., Glass, J.I., Venter, J.C., Hutchison, C.A., Smith, H.O.: Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome. Science 319(5867), 1215–1220 (2008)

    Article  CAS  Google Scholar 

  28. Gilbert, W.: Origin of life: The RNA world. Nature 319(6055), 618 (1986)

    Article  Google Scholar 

  29. Girard, P., Pécréaux, J., Lenoir, G., Falson, P., Rigaud, J.L., Bassereau, P.: A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys. J. 87(1), 419–429 (2004)

    Article  CAS  Google Scholar 

  30. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J.: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391(2), 85–100 (1981)

    Article  CAS  Google Scholar 

  31. Hanczyc, M.M., Szostak, J.W.: Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol. 8(6), 660–4 (2004)

    Article  CAS  Google Scholar 

  32. Hanke, W., Schlue, W.R.: Planar Lipid Bilayers: Methods and Applications. Academic Press, London (1993)

    Google Scholar 

  33. Hennesthal, C., Drexler, J., Steinem, C.: Membrane-suspended nanocompartments based on ordered pores in alumina. Chem. Phys. Chem. 3(10), 885–889 (2002)

    Article  CAS  Google Scholar 

  34. Hennesthal, C., Steinem, C.: Pore-spanning lipid bilayers visualized by scanning force microscopy. J. Am. Chem. Soc. 122(33), 8085–8086 (2000)

    Article  CAS  Google Scholar 

  35. Hille, B.: Ion Channels of Excitable Membranes. Sinauer Associates Inc, Sunderland (2001)

    Google Scholar 

  36. Holloway, P.W.: A simple procedure for removal of Triton X-100 from protein samples. Anal. Biochem. 53(1), 304–308 (1973)

    Article  CAS  Google Scholar 

  37. Inouye, S., Tsuji, F.I.: Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 341(2–3), 277–280 (1994)

    Article  CAS  Google Scholar 

  38. Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, London (1991)

    Google Scholar 

  39. Kahya, N., Pécheur, E.I., de Boeij, W.P., Wiersma, D.A., Hoekstra, D.: Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophys. J. 81(3), 1464–1474 (2001)

    Article  CAS  Google Scholar 

  40. Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., Schwille, P.: Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278(30), 28,109–28,115 (2003).

    Google Scholar 

  41. Kahya, N., Scherfeld, D., Bacia, K., Schwille, P.: Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J. Struct. Biol. 147(1), 77–89 (2004)

    Article  CAS  Google Scholar 

  42. Kahya, N., Wiersma, D.A., Poolman, B., Hoekstra, D.: Spatial organization of bacteriorhodopsin in model membranes. Light-induced mobility changes. J. Biol. Chem. 277(42), 39,304–39,311 (2002)

    Google Scholar 

  43. Kushwaha, S.C., Kates, M.: Isolation and identification of “bacteriorhodopsin” and minor c40-carotenoids in halobacterium cutirubrum. Biochim. Biophys. Acta 316(2), 235–243 (1973)

    Article  CAS  Google Scholar 

  44. Lasic, D.D.: The mechanism of vesicle formation. Biochem. J. 256(1), 1–11 (1988)

    CAS  Google Scholar 

  45. Lazebnik, Y.: Can a biologist fix a radio?—Or, what I learned while studying apoptosis, (Cancer Cell. 2002 Sep, 2(3), pp. 179–182). Biochemistry 69(12), 1403–1406 (2004)

    CAS  Google Scholar 

  46. Loakes, D., Holliger, P.: Darwinian chemistry: towards the synthesis of a simple cell. Mol. BioSyst. 5(7), 686–694 (2009)

    Article  CAS  Google Scholar 

  47. Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K., Schwille, P.: Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320(5877), 789–792 (2008)

    Article  CAS  Google Scholar 

  48. Luisi, P.L.: About various definitions of life. Orig. Life Evol. Biosph. 28(4–6), 613–622 (1998)

    Article  CAS  Google Scholar 

  49. Luisi, P.L.: Toward the engineering of minimal living cells. Anat. Rec. 268(3), 208–214 (2002)

    Article  CAS  Google Scholar 

  50. Mach, T., Chimerel, C., Fritz, J., Fertig, N., Winterhalter, M., Fütterer, C.: Miniaturized planar lipid bilayer: increased stability, low electric noise and fast fluid perfusion. Anal. Bioanal. Chem. 390(3), 841–846 (2008)

    Article  CAS  Google Scholar 

  51. Magde, D., Webb, W.W., Elson, E.: Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29(11), 705 (1972)

    Article  CAS  Google Scholar 

  52. Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Artificial cell division. Biosystems 76(1–3), 157–167 (2004)

    Article  Google Scholar 

  53. Merkle, D., Kahya, N., Schwille, P.: Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles. Chem. Bio. Chem. 9(16), 2673–2681 (2008)

    CAS  Google Scholar 

  54. Mey, I., Stephan, M., Schmitt, E.K., Müller, M.M., Amar, M.B., Steinem, C., Janshoff, A.: Local membrane mechanics of pore-spanning bilayers. J. Am. Chem. Soc. 131(20), 7031–7039 (2009)

    Article  CAS  Google Scholar 

  55. Miller, C.: Ion Channel Reconstitution. Plenum Press, New York (1986)

    Google Scholar 

  56. Montal, M., Mueller, P.: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U. S. A. 69(12), 3561–3566 (1972)

    Article  CAS  Google Scholar 

  57. Montes, L.R., Alonso, A., Goni, F.M., Bagatolli, L.A.: Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 93(10), 3548–3554 (2007)

    Article  CAS  Google Scholar 

  58. Mueller, P., Rudin, D., Tien, H., Wescott, W.: Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194, 979–980 (1962)

    Article  CAS  Google Scholar 

  59. Neumann, S., Fuchs, A., Mulkidjanian, A., Frishman, D.: Current status of membrane protein structure classification. Proteins 78(7), 1760–1773 (2010)

    CAS  Google Scholar 

  60. Noji, H., Yasuda, R., Yoshida, M., Kinosita, K.: Direct observation of the rotation of F1-ATPase. Nature 386(6622), 299–302 (1997)

    Article  CAS  Google Scholar 

  61. Oberholzer, T., Luisi, P.L.: The use of liposomes for constructing cell models. J. Biol. Phys. 28(4), 733–744 (2002)

    Article  CAS  Google Scholar 

  62. Oesterhelt, D., Stoeckenius, W.: Rhodopsin—like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233(39), 149–152 (1971)

    CAS  Google Scholar 

  63. Parsegian, A.: Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221(5183), 844–846 (1969)

    Article  CAS  Google Scholar 

  64. Paternostre, M.T., Roux, M., Rigaud, J.L.: Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27(8), 2668–2677 (1988)

    Article  CAS  Google Scholar 

  65. de Planque, M.R.R., de Planque, M.R.R., Mendes, G.P., Zagnoni, M., Sandison, M.E., Fisher, K.H., Berry, R.M., Watts, A., Morgan, H.: Controlled delivery of membrane proteins to artificial lipid bilayers by nystatin-ergosterol modulated vesicle fusion. IEEE Proc. Nanobiotechnol. 153(2), 21–30 (2006)

    Article  CAS  Google Scholar 

  66. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., Cormier, M.J.: Primary structure of the aequorea victoria green-fluorescent protein. Gene 111(2), 229–233 (1992)

    Article  CAS  Google Scholar 

  67. Rajendran, L., Simons, K.: Lipid rafts and membrane dynamics. J. Cell Sci. 118(Pt 6), 1099–1102 (2005)

    Article  CAS  Google Scholar 

  68. Rasmussen, S., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F., Bedau, M.A.: Evolution. Transitions from nonliving to living matter. Science 303(5660), 963–965 (2004)

    Google Scholar 

  69. Rayfield, G.W.: Photodiodes based on bacteriorhodopsin. In: R.R. Birge (ed.) Molecular and biomolecular electronics. Adv. Chem. Ser. 240, 561–575 (1994)

    Google Scholar 

  70. Reeves, J.P., Dowben, R.M.: Formation and properties of thin-walled phospholipid vesicles. J. Cell. Physiol. 73(1), 49–60 (1969)

    Article  CAS  Google Scholar 

  71. Rigaud, J.L., Lévy, D.: Detergent removal by non-polar polystyrene beads: applications to membrane protein reconstitution and two-dimensional crystallization. Eur. Biophys. 27, 2677–2688 (1998)

    Google Scholar 

  72. Rigaud, J.L., Lévy, D.: Reconstitution of membrane proteins into liposomes. Methods Enzymol. 372, 65–86 (2003)

    Article  CAS  Google Scholar 

  73. Rigaud, J.L., Paternostre, M.T., Bluzat, A.: Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27(8), 2677–2688 (1988)

    Article  CAS  Google Scholar 

  74. Rostovtseva, T.K., Bezrukov, S.M.: ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys. J. 74(5), 2365–2373 (1998)

    Article  CAS  Google Scholar 

  75. Rothfield, L., Taghbalout, A., Shih, Y.L.: Spatial control of bacterial division-site placement. Nat. Rev. Microbiol. 3(12), 959–968 (2005)

    Article  CAS  Google Scholar 

  76. Sackmann, E., Träuble, H.: Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition. J. Am. Chem. Soc. 94(13), 4482–91 (1972)

    Article  CAS  Google Scholar 

  77. Sakmann, B., Neher, E.: Singel-Channel Recording. Plenum Press, New York (1995)

    Google Scholar 

  78. Schindler, H.: Formation of planar bilayers from artificial or native membrane vesicles. FEBS Lett. 122(1), 77–79 (1980)

    Article  CAS  Google Scholar 

  79. Schmidt, C., Mayer, M., Vogel, H.: A chip-based biosensor for the functional analysis of single ion channels. Angew. Chem. Int. Ed. 39(17), 3137–3140 (2000)

    Article  CAS  Google Scholar 

  80. Schwille, P., Diez, S.: Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol. 44(4), 223–242 (2009)

    Article  CAS  Google Scholar 

  81. Schwille, P., Oehlenschläger, F., Walter, N.G.: Quantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis. Biochemistry 35(31), 10,182–10,193 (1996)

    Google Scholar 

  82. Segré, D., Ben-Eli, D., Deamer, D.W., Lancet, D.: The lipid world. Orig. Life Evol. Biosph. 31(1–2), 119–145 (2001)

    Article  Google Scholar 

  83. Shirmomura, O., Johnson, F.H., Saiga, Y.: Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. Aequorea. J. Cell Comp. Physiol. 59, 223–239 (1962)

    Article  Google Scholar 

  84. Simons, K., Vaz, W.L.C.: Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004)

    Article  CAS  Google Scholar 

  85. Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175(23), 720–731 (1972)

    Article  CAS  Google Scholar 

  86. Stachowiak, J.C., Richmond, D.L., Li, T.H., Liu, A.P., Parekh, S.H., Fletcher, D.A.: Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc. Natl. Acad. Sci. U. S. A. 105(12), 4697–4702 (2008)

    Article  CAS  Google Scholar 

  87. Stock, D., Leslie, A.G., Walker, J.E.: Molecular architecture of the rotary motor in ATP synthase. Science 286(5445), 1700–1705 (1999)

    Article  CAS  Google Scholar 

  88. Streif, S., Staudinger, W.F., Marwan, W., Oesterhelt, D.: Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J. Mol. Biol. 384(1), 1–8 (2008)

    Article  CAS  Google Scholar 

  89. Szostak, J.W., Bartel, D.P., Luisi, P.L.: Synthesizing life. Nature 409(6818), 387–390 (2001)

    Google Scholar 

  90. Takakura, K., Toyota, T., Sugawara, T.: A novel system of self-reproducing giant vesicles. J. Am. Chem. Soc. 125(27), 8134–8140 (2003)

    Google Scholar 

  91. Tamm, L.K., McConnell, H.M.: Supported phospholipid bilayers. Biophys. J. 47(1), 105–113 (1985)

    Article  CAS  Google Scholar 

  92. Varnier, A., Kermarrec, F., Blesneac, I., Moreau, C., Liguori, L., Lenormand, J.L., Picollet-D’hahan, N.: A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles. J. Membr. Biol. 233(1–3), 85–92 (2010)

    CAS  Google Scholar 

  93. Vereb, G., Szöllosi, J., Matkó, J., Nagy, P., Farkas, T., Vigh, L., Mátyus, L., Waldmann, T.A., Damjanovich, S.: Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc. Natl. Acad. Sci. U. S. A. 100(14), 8053–8058 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Schweizer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schweizer, J., Garten, M., Schwille, P. (2012). Packaging in Synthetic Biology. In: Gerlach, G., Wolter, KJ. (eds) Bio and Nano Packaging Techniques for Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28522-6_19

Download citation

Publish with us

Policies and ethics